Plasma has a neutral charge, as well as the same amount of protons and electrons put together. if the question has only one answer then it is plasma.
Answer:
2 moles of Methane gas will occupy 44.8 L
Explanation:
If one mole of any gas occupies 22.4 L under certain conditions of temperature and pressure, and those conditions are assumed in this question, then we comfortably solve this problem as follows;
1 mole of Methane gas ---------------> 22.4 L
2 moles of Methane gas -------------->?
Cross and multiply, 2 moles of Methane gas = 2 X 22.4 L = 44.8L
Therefore, 2 moles of Methane gas will occupy 44.8 L, if the conditions of temperature and pressure are maintained.
OPTION A IS THE RIGHT SOLUTION.
1) V(CH₄) = 0,376 L.T(CH₄) = 304 K.p(CH₄) = 1,5 atm 101325 Pa/atm = 151987,5 Pa = 151,9875 kPa.R = 8,314 J/K·mol.Use ideal gas law: p·V = n·R·T.n(CH₄) = p · V ÷ R · T.n(CH₄) = 151,9875 kPa · 0,376 L ÷ 8,314 J/K· mol · 304 K.n(CH₄) = 0,0226 mol.V(CH₄) = n(CH₄) · Vm.V(CH₄) = 0,0226 mol · 22,4 dm³/mol.V(CH₄) = 0,506 dm³ = 0,506 L.
2) V(SO₂) = 5,2 L.p(SO₂) = 45,2 atm = 45,2 atm · 101,325 kPa/atm = 4579,89 kPa.T(SO₂) = 293 K.R = 8,314 J/K·mol.Use ideal gas law: p·V = n·R·T.n(SO₂) = p · V ÷ R · T.n(SO₂) = 4579,89 kPa · 5,2 L ÷ 8,314 J/K· mol · 293 K.n(CH₄) = 9,77 mol.There is not enogh SO₂, 225 mol - 9,77 mol = 215,23 mol is needed.
3) p(He) = 3,50 atm · 101,325 kPa/atm = 354,63 kPa.V(He) = 4,00 L.n(He) = 0,410 mol.R = 8,314 J/K·mol.Use ideal gas law: p·V = n·R·T.T = p · V ÷ R · n.T(He) = 354,63 kPa · 4,00 L ÷ 8,314 J/K· mol · 0,410 mol.T(He) = 416,14 K.n - amount of substance.
4) p(Ar) = 1,00 atm · 101,325 kPa/atm = 101,325 kPa.V(Ar) = 3,4 L.T(Ar) = 263 K.R = 8,314 J/K·mol.Use ideal gas law: p·V = n·R·T.n(Ar) = p · V ÷ R · T.n(Ar) = 101,325 kPa · 3,4 L ÷ 8,314 J/K· mol · 263 K.n(Ar) = 0,157 mol.n(Ar) = 0,157 mol + 2,5 mol = 2,657 mol.p(Ar) = 2,657 mol · 8,314 J/K· mol · 263 K ÷ 3,4 L.p(Ar) = 1708,74 kPa.
Answer:
270 Joules
Explanation:
The specific heat capacity equation will be used for this question i.e.
Q = m. c. ΔT
Where; Q = Amount of heat
m = mass of substance
C = specific heat capacity of
substance
ΔT = change in temperature
(Final temp - initial temp)
However, for this unknown metal, we need to find the specific heat first by saying; C = Q / mΔT
Q= 135J, C=?, m= 10g, ΔT = (40-25 = 15°C)
C = 135 / 15 × 10
C = 135/150
C = 0.9 J/g°C
If the specific heat capacity of the unknown metal is 0.9 J/g°C, then at a mass of 20.0g, and a ΔT of 15°C, the amount of heat needed is:
Q = m. c. ΔT
Q = 20 × 0.9 × (40-25)
Q = 18 × 15
Q = 270J
270 Joules of heat is needed to increase the temperature of 20g of the metal from 25 - 40°C