Answer:

Explanation:
Let assume that changes in gravitational potential energy can be neglected. The fire hose nozzle is modelled by the Bernoulli's Principle:

The initial pressure is:

The speed at outlet is:

![v=\frac{(250\,\frac{gal}{min} )\cdot (\frac{3.785\times 10^{-3}\,m^{3}}{1\,gal} )\cdot(\frac{1\,min}{60\,s} )}{\frac{\pi}{4}\cdot [(1.125\,in)\cdot(\frac{0.0254\,m}{1\,in} )]^{2} }](https://tex.z-dn.net/?f=v%3D%5Cfrac%7B%28250%5C%2C%5Cfrac%7Bgal%7D%7Bmin%7D%20%29%5Ccdot%20%28%5Cfrac%7B3.785%5Ctimes%2010%5E%7B-3%7D%5C%2Cm%5E%7B3%7D%7D%7B1%5C%2Cgal%7D%20%29%5Ccdot%28%5Cfrac%7B1%5C%2Cmin%7D%7B60%5C%2Cs%7D%20%29%7D%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%5Ccdot%20%5B%281.125%5C%2Cin%29%5Ccdot%28%5Cfrac%7B0.0254%5C%2Cm%7D%7B1%5C%2Cin%7D%20%29%5D%5E%7B2%7D%20%7D)

The initial pressure is:


Answer:
f = c / λ = wave speed c (m/s) / wavelength λ (m). The formula for time is: T (period) = 1 / f (frequency). λ = c / f = wave speed c (m/s) / frequency f (Hz). The unit hertz (Hz) was once called cps = cycles per second.
Explanation:
Answer:
Explanation:
The answer to the given problem is been solved in the fine attached below.
Answer:
Flexible duct
Explanation:
it is flexible duct due to current flow