1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
otez555 [7]
2 years ago
12

A golfer and her caddy see lightning nearby. the golfer is about to take his shot with a metal club, while her caddy is holding

a plastic handled umbrella. which person is at greater risk? Explain why?
Engineering
1 answer:
Sveta_85 [38]2 years ago
7 0

Answer:

The golfer is at greater risk.

Explanation:

The golfer is holding a metal club. Metal is a good conductor for electricity (lightning), meaning electrons can pass through easily. Her caddy is at lesser risk because she is holding a plastic handled umbrella. Plastic is an insulator, which does not easily allow the movement of electrons to pass.

You might be interested in
Select a research proposal topic that relates to electrical and electronics engineering and write a proposal report taking into
fiasKO [112]

Expand your technical knowledge, form global networks and balance life & work commitments. Our advanced diplomas remain current with technological and industry developments.

8 0
3 years ago
Hi, any kind of help on these questions will be appreciated.
Zielflug [23.3K]

Answer:

IDK

Explanation:

8 0
3 years ago
A mass of 5 kg of saturated water vapor at 100 kPa is heated at constant pressure until the temperature reaches 200°C.
Alex73 [517]

Answer: you can watch a video on how to solve this question on you tube

6 0
3 years ago
Where loads are likely to be on continuously, the calculated load for branch circuits and feeders must be figured at (100%) (125
Anna [14]

Where loads are likely to be on continuously, the calculated load for branch circuits and feeders must be figured at 125%.

Section 210.19(A)(1) permits the bigger of the two values listed below to be utilized as the connectors 's ultimate size for sizing an ungrounded branch circuit conductor:

Without any extra adjustments or corrections, either 125% of the continuous load, OR

When adjustment and corrective factors are applied, the load is 100% (not 125% as stated previously).

This will be the same in the 2020 NEC. The introduction of new exception 2 is what has changed. To comprehend this new exception, one must study it very carefully. A part of a branch circuit connected to pressure connectors (such as power distribution blocks) that complies with 110.14(C)(2) may now be sized using the continuous load plus the noncontiguous load instead of 125% of the continuous load thanks to the new exception.

To know more about connectors click here:

brainly.com/question/16987039

#SPJ4

4 0
11 months ago
11–17 A long, thin-walled double-pipe heat exchanger with tube and shell diameters of 1.0 cm and 2.5 cm, respectively, is used t
lana [24]

Answer:

the overall heat transfer coefficient of this heat exchanger is 1855.8923 W/m²°C

Explanation:

Given:

d₁ = diameter of the tube = 1 cm = 0.01 m

d₂ = diameter of the shell = 2.5 cm = 0.025 m

Refrigerant-134a

20°C is the temperature of water

h₁ = convection heat transfer coefficient = 4100 W/m² K

Water flows at a rate of 0.3 kg/s

Question: Determine the overall heat transfer coefficient of this heat exchanger, Q = ?

First at all, you need to get the properties of water at 20°C in tables:

k = 0.598 W/m°C

v = 1.004x10⁻⁶m²/s

Pr = 7.01

ρ = 998 kg/m³

Now, you need to calculate the velocity of the water that flows through the shell:

v_{w} =\frac{m}{\rho \pi (\frac{d_{2}^{2}-d_{1}^{2}  }{4} )} =\frac{0.3}{998*\pi (\frac{0.025^{2}-0.01^{2}  }{4}) } =0.729m/s

It is necessary to get the Reynold's number:

Re=\frac{v_{w}(d_{2}-d_{1}) }{v} =\frac{0.729*(0.025-0.01)}{1.004x10^{-6} } =10891.4343

Like the Reynold's number is greater than 10000, the regime is turbulent. Now, the Nusselt's number:

Nu=0.023Re^{0.8} Pr^{0.4} =0.023*(10891.4343)^{0.8} *(7.01)^{0.4} =85.0517

The overall heat transfer coefficient:

Q=\frac{1}{\frac{1}{h_{1} }+\frac{1}{h_{2} }  }

Here

h_{2} =\frac{kNu}{d_{2}-d_{1}} =\frac{0.598*85.0517}{0.025-0.01} =3390.7278W/m^{2}C

Substituting values:

Q=\frac{1}{\frac{1}{4100}+\frac{1}{3390.7278}  } =1855.8923W/m^{2} C

5 0
3 years ago
Other questions:
  • A large truck drives down the highway at 10 m/s hauling a rectangular trailer that is 6 m long, 2 m wide, and 2 m tall. The trai
    14·1 answer
  • A parallel circuit with two branches and an 18 volt battery. Resistor #1 on the first branch has a value of 220 ohms and resisto
    7·1 answer
  • Michelle is the general manager of a power plant. This morning, she will meet with city officials to discuss environmental issue
    5·1 answer
  • Consider uniaxial extension of a test specimen. It has gauge length L = 22 cm (the distance between where it is clamped in the t
    6·1 answer
  • Thermodynamics fill in the blanks The swimming pool at the local YMCA holds roughly 749511.5 L (749511.5 kg) of water and is kep
    6·1 answer
  • ⚠️I mark BRIANLIST ⚠️The same engineering teams are able to design and develop the different subsystems for an airplane.
    5·2 answers
  • A 1/4" nut driver with a 1.52 inch diameter handle is used to install a 14" 6 UNC
    13·1 answer
  • The aluminum rod (E1 = 68 GPa) is reinforced with the firmly bonded steel tube (E2 = 201 GPa). The diameter of the aluminum rod
    11·1 answer
  • What do you think causes the differences in the properties of oxygen gas (O2) and ozone (O3)? the space between the atoms the ra
    9·1 answer
  • How might a field like philosophy of history help scientists​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!