1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivahew [28]
3 years ago
7

Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the y

-axis.
y = 5x2, y = 30x − 10x2
Engineering
1 answer:
kow [346]3 years ago
3 0

Answer:

40π

Explanation:

First, find the limits (intersections).

5x² = 30x − 10x²

15x² − 30x = 0

x² − 2x = 0

x (x − 2) = 0

x = 0 or 2

Within this interval, 30x − 10x² is greater than 5x².

Dividing the volume into cylindrical shells, the volume of each shell is:

dV = 2π r h t

dV = 2π x (30x − 10x² − 5x²) dx

dV = 2π x (30x − 15x²) dx

dV = 30π (2x² − x³) dx

The total volume is the sum (integral):

V = ∫ dV

V = ∫₀² 30π (2x² − x³) dx

V = 30π ∫₀² (2x² − x³) dx

V = 30π (⅔ x³ − ¼ x⁴)|₀²

V = 30π (⅔ 8 − ¼ 16)

V = 30π (16/3 − 4)

V = 10π (16 − 12)

V = 40π

You might be interested in
The yellow rectangle area is 25% (or 1/4) the area of the blue rhombus. The height (H) of the yellow rectangle is twice as long
Kitty [74]

Answer:

I don't know sry

Explanation:

6 0
3 years ago
What might cause a shotgun to explode?
Tanzania [10]

Answer:

When you pull the trigger to shoot a shotshell from a shotgun or a cartridge from a rifle or handgun, the firing pin strikes the primer in the base of the cartridge or shotshell. This causes the primer to explode. The spark from the primer ignites the gunpowder, which burns rapidly and converts to a gas.

Explanation:

3 0
2 years ago
Read 2 more answers
A well-insulated, rigid tank has a volume of 1 m3and is initially evacuated. A valve is opened,and the surrounding air enters at
DiKsa [7]

Answer:

0.5 kW

Explanation:

The given parameters are;

Volume of tank = 1 m³

Pressure of air entering tank = 1 bar

Temperature of air = 27°C = 300.15 K

Temperature after heating  = 477 °C = 750.15 K

V₂ = 1 m³

P₁V₁/T₁ = P₂V₂/T₂

P₁ = P₂

V₁ = T₁×V₂/T₂ = 300.15 * 1 /750.15 = 0.4 m³

dQ = m \times c_p \times (T_2 -T_1)

For ideal gas, c_p = 5/2×R = 5/2*0.287 = 0.7175 kJ

PV = NKT

N = PV/(KT) = 100000×1/(750.15×1.38×10⁻²³)

N = 9.66×10²⁴

Number of moles of air = 9.66×10²⁴/(6.02×10²³) = 16.05 moles

The average mass of one mole of air = 28.8 g

Therefore, the total mass = 28.8*16.05 = 462.135 g = 0.46 kg

∴ dQ = 0.46*0.7175*(750.15 - 300.15) = 149.211 kJ

The power input required = The rate of heat transfer = 149.211/(60*5)

The power input required = 0.49737 kW ≈ 0.5 kW.

3 0
3 years ago
Calculate the rate at which body heat is conducted through the clothing of a skier in a steady- state process, given the followi
olga2289 [7]

Answer:

230.4W

Explanation:

Heat transfer by conduction consists of the transport of energy in the form of heat through solids, in this case a jacket.

the equation is as follows

Q=\frac{KA(T2-T1)}{L} \\

Where

Q=heat

k=conductivity=0.04

A=Area=1.8m^2

T2=33C

T1=1C

L=thickness=1cm=0.01mQ=\frac{(0.04)(1.8m^2)(33-1)}{0.01m}

Q=230.4W

the skier loses heat at the rate of 230.4W

4 0
3 years ago
Generally, final design results are rounded to or fixed to three digits because the given data cannot justify a greater display.
creativ13 [48]

Answer:

(a) 1.90 kpsi

(b) 0.40 kpsi

(c) 0.61 in.

(d) 0.009

(a) 8 MPa

(b) 1.30 cm⁴

(c) 2.04 cm⁴

(d) 62.2 MPa

Explanation:

(a) σ = M/Z, where M = 1770 lbf·in and Z = 0.943 in³.

1770/0.943 = 1876.988 lbf/in² = 1.90 kpsi

(b) σ = F/A, where F = 9440 lbf and A = 23.8 in².

9440 /23.8 = 396.639 lbf/in² = 0.4 kpsi

(c) y = Fl³/(3EI)

F = 270 lbf

l = 31.5 in.

E = 30 Mpsi

I = 0.154 in.⁴

y = 270×31.5³/(3×30×10⁶×0.154) = 0.61 in.

(d) θ = Tl/(GJ), where T = 9740 lbf·in, l = 9.85 in. G = 11.3 Mpsi, and d = 1.00 in.

J = π·d⁴/32 = π/32 in.⁴

∴ θ = 9740  × 9.85 /(11.3 × 10⁶× π/32) = 0.009

(a) σ = F/wt, where F = 1 kN, w = 25 mm, and t = 5 mm

∴ σ = 1000/(0.025 × 0.005) = 8 MPa

(b) I = bh³/12, where b = 10 mm and h = 25 mm.

10×25³/12 = 1.30 cm⁴

(c) I = π·d⁴/64 where d = 25.4 mm.

I = π × 25.4⁴/64 = 2.04 cm⁴

(d) τ = 16×T/(π×d³), where T = 25 N·m, and d = 12.7 mm.

16×25/(π×0.0127³) = 62.2 MPa.

8 0
3 years ago
Other questions:
  • Water flows through a horizontal plastic pipe with a diameter of 0.15 m at a velocity of 15 cm/s. Determine the pressure drop pe
    11·1 answer
  • What are the four processes of the Carnot cycle? Sketch the Carnot cycle (a) on T-s (temperature - entropy) and P-V (pressure -
    7·1 answer
  • A circular ceramic plate that can be modeled as a blackbody is being heated by an electrical heater. The plate is 30 cm in diame
    15·1 answer
  • You are watching the weather forecast and the weatherman says that strong thunderstorms and possible tornadoes are likely to for
    15·1 answer
  • You are an engineer at company XYZ, and you are dealing with the need to determine the maximum load you can apply to a set of bo
    13·1 answer
  • Always refill your gas tank well before
    6·1 answer
  • Give six reasons why farmers cultivate on small land​
    5·1 answer
  • 3. What is a caliber (relate it to rockets)
    14·1 answer
  • What are the main microsoft ware packages widely used today​
    6·2 answers
  • You may wonder who the rest goes
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!