Answer:
The original length of the specimen is found to be 76.093 mm.
Explanation:
From the conservation of mass principal, we know that the volume of the specimen must remain constant. Therefore, comparing the volumes of both initial and final state as state 1 and state 2:
Initial Volume = Final Volume
πd1²L1/4 = πd2²L2/4
d1²L1 = d2²L2
L1 = d2²L2/d1²
where,
d1 = initial diameter = 19.636 mm
d2 = final diameter = 19.661 mm
L1 = Initial Length = Original Length = ?
L2 = Final Length = 75.9 mm
Therefore, using values:
L1 = (19.661 mm)²(75.9 mm)/(19.636 mm)²
<u>L1 = 76.093 mm</u>
Answer:
The current through each lamp is 0.273 Amperes
Power dissipated in each lamp is 0.082W
Explanation:
Battery v = 1.5 V
Each lamp has resistance, r = 1.1 Ohms
The 5 lamps in series will therefore have total resistance, R = 5 * 1.1 = 5.5 Ohms
The current through each lamp, I = v/R = 1.5 / 5.5 = 0.273 Amperes
Power dissipated in each lamp = I² * r = 0.273² * 1.1 = 0.082W
Answer:
LTI system is stable if Impulse response is finite.
so the correct answer is "b"
(b) h2(t) = e-r cos(2t)u(t)
Explanation:
voltage, current and resistance are the Volt [ V ], Ampere [ A ] and Ohm [ Ω ]