You can find the answer on google for this
The balanced chemical equation for the Haber-Bosch process is N₂(g) + 3H₂(g) → 2NH₃(g). The Haber-Bosch process played a significant role in boosting agriculture back in the day. It paved the way for the industrial production of ammonia which is used in the manufacture of fertilizers. The process involves reacting atmospheric N₂ with H₂ using a metal catalyst under high temperature and pressure.
Answer:
Explanation:
You should allow the solvent to drop to the level of the adsorvent, so it would never run dry.
When you let your sample to run dry it will never finish to flow from the adsorbent depending of it polarity.
Water should not be used because it can dissolve the adsorbent.
You could use another technique to identify the compound, as an infrared or a ultraviolet detector. You can also, if you know the compounds, identify it for the retention time, for example, if you need to detect two compounds, one more polar than the other, and use a polar adsorbent and a non-polar solvent, the first compound to exit the column will be the less polar one, because it will have a bigger interaction with the solvent than the stationary phase (adsorbent) and will go faster, the second will be the more polar one, because it will have a bigger interaction with the stationary phase.
The answer is; A
During a hot day, the land heats up faster than the waters. The air on land becomes warm and less dense fast and begin to rise in the atmosphere. The air on the ocean with is still cooler and denser moves in to replace the rising on land air. This causes a sea breeze. The sea breeze carries with it, moisture. The hotter the day the higher the humidity. When the air goes inland, it causes precipitation when it rises, cool, and condenses.