Answer: 14.1g
Explanation:
Given that,
number of moles of SiO2 = 0.235 moles
Mass in grams = Z (let unknown value be Z)
Molar mass of SiO2 = ?
To get the molar mass of SiO2, use the atomic mass
Silicon = 28g;
Oxygen = 16g
i.e Molar mass of SiO2 = 28g + (16g x 2)
= 28g + 32g
= 60g/mol
Now, apply the formula
Number of moles = Mass / molar mass
0.235 moles = Z / 60g/mol
Z = 0.235 moles x 60g/mol
Z = 14.1 g
Thus, the mass of SiO2 is 14.1 grams.
Answer:
A
Explanation:
The letter A is the correct answer
The solubility equilibrium of
:
[tex] CaCrO_{4}(aq)<===>Ca^{2+}(aq) + CrO_{4}^{2-}(aq)\\
Q_{sp}=[Ca^{2+}][CrO_{4}^{2-}]\\
= (0.0200 M)(0.0300 M) \\
= 0.0006
Ksp (0.00071) > Qsp (0.0006). So, <u>no precipitate would form</u>.
Answer:
0.098 moles
Explanation:
Let y represent the number of moles present
1 mole of Ba(OH)₂ contains 2 moles of OH- ions.
Hence, 0.049 moles of Ba(OH)2 contains y moles of OH- ions.
To get the y moles, we then do cross multiplication
1 mole * y mole = 2 moles * 0.049 mole
y mole = 2 * 0.049 / 1
y mole = 0.098 moles of OH- ions.
1 mole of OH- can neutralize 1 mole of H+
Therefore, 0.098 moles of HNO₃ are present.