Answer:

Step-by-step explanation:
The graph of the equation that will contain the points (2, 3) and (3, 2) is the graph that has a slope value that is equivalent to the slope value of the line running through the two points.
Slope of the line running through (2, 3) and (3, 2):
.
Slope (m) = -1.
The equation,
, is given in the slope-intercept form, which means it has a slope value of -1. I.e. the term "-x" is equivalent to -1x. So therefore, the graph of the equation that contains the points (2, 3) and (3, 2) is
.
The height is always measured perpendicular to the horizontal surface on which the pyramid rests, whereas the slant height is measured perpendicular to one edge of the base to the vertex, and, as we would say, appears to be slanted.
Answer:
The length of the resulting segment is 500.
Step-by-step explanation:
Vectorially speaking, the dilation is defined by following operation:
(1)
Where:
- Center of dilation.
- Original point.
- Scale factor.
- Dilated point.
First, we proceed to determine the coordinates of the dilated segment:
(
,
,
,
)
![P'(x,y) = O(x,y) + k\cdot [P(x,y)-O(x,y)]](https://tex.z-dn.net/?f=P%27%28x%2Cy%29%20%3D%20O%28x%2Cy%29%20%2B%20k%5Ccdot%20%5BP%28x%2Cy%29-O%28x%2Cy%29%5D)
![P(x,y) = (0,0) +5\cdot [(10,40)-(0,0)]](https://tex.z-dn.net/?f=P%28x%2Cy%29%20%3D%20%280%2C0%29%20%2B5%5Ccdot%20%5B%2810%2C40%29-%280%2C0%29%5D)

![Q'(x,y) = O(x,y) + k\cdot [Q(x,y)-O(x,y)]](https://tex.z-dn.net/?f=Q%27%28x%2Cy%29%20%3D%20O%28x%2Cy%29%20%2B%20k%5Ccdot%20%5BQ%28x%2Cy%29-O%28x%2Cy%29%5D)
![Q' (x,y) = (0,0) +5\cdot [(70,120)-(0,0)]](https://tex.z-dn.net/?f=Q%27%20%28x%2Cy%29%20%3D%20%280%2C0%29%20%2B5%5Ccdot%20%5B%2870%2C120%29-%280%2C0%29%5D)

Then, the length of the resulting segment is determined by following Pythagorean identity:


The length of the resulting segment is 500.
the answer for number 1 is
10,962,500,000
Answer:
All lines, with a value for the slope, will have one zero.
Step-by-step explanation:
To find the zero of a linear function, simply find the point where the line crosses the x-axis. Zeros of linear functions: The blue line, y=12x+2 y = 1 2 x + 2 , has a zero at (−4,0) ; the red line, y=−x+5 y = − x + 5 , has a zero at (5,0) .