1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
otez555 [7]
3 years ago
6

A 4.55 nF parallel-plate capacitor contains 27.5 μJ of stored energy. By how many volts would you have to increase this potentia

l difference in order for the capacitor to store 55.0 μJ of potential energy?
Express your answer in volts as an integer.
Physics
1 answer:
aivan3 [116]3 years ago
5 0

Answer:

\Delta V=V_{2}-V_{1}=45.4V

Explanation:

The energy, E, from a capacitor, with capacitance, C, and voltage V is:

E=\frac{1}{2} CV^{2}

V=\sqrt{2E/C}

If we increase the Voltage, the Energy increase also:

V_{1}=\sqrt{2E_{1}/C}

V_{2}=\sqrt{2E_{2}/C}

The voltage difference:

V_{2}-V_{1}=\sqrt{2E_{2}/C}-\sqrt{2E_{1}/C}

V_{2}-V_{1}=\sqrt{2*55*10^{-6}/4.55*10^{-9}}-\sqrt{2*27.5*10^{-6}/4.55*10{-9}}=45.4V

You might be interested in
The magnetic field strength at the north pole of a 2.0-cm-diameter, 8-cm-long Alnico magnet is 0.10 T. To produce the same field
frosja888 [35]

Answer:

N = 3032  turns

Explanation:

The magnetic field produced by a solenoid is described by

        B = μ₀ n I

Where is the permittivity in a vacuum with a value of 4π 10⁻⁷ N /A²,  n  is the turn density and I the current

Let's apply this equation to the problem, the turn density is the number of turns per unit length, in this case it is the same magnet length

       L = 8 cm = 0.08 m

Let's calculate

      B = μ₀ N/L   I

      N = B L / μ₀ I

      N = 0.10 0.08 / (4π 10⁻⁷  2.1)

      N = 3,032 103 turns

4 0
3 years ago
The radiator of a car is a type of heat exchanger. Hot fluid coming from the car engine, called the coolant, flows through alumi
Alex777 [14]

Answer:

(A) The correct answer is option (B) three halves that of the old unit.

(B) The answer is three fourth that of old unit

Explanation:

from the relation;

(A) Fromthe expression;

K = Qd/AΔT

Anew = 3/2 A(old)

(B)

K¹ = 2K(old), so we get

A(old) = A(old)/2

Combining with part A, we have;

Anew = 3/2 *A(old)/2

          = 3/4A(old)

The answer is three fourth that of old unit

8 0
3 years ago
Plz i need help for the 5 problems. plz show the work!!!
Artemon [7]

Answer:

1.   3 m/s^{2}

2.   1.5 m/s^{2}

3.   3 seconds

4.   0 m/s^{2}

5.   2.2 seconds

Explanation:

(1)

From v= u + at where v is final velocity, u is initial velocity, a is acceleration and t is time.

Making a the subject we have

a=\frac {v-u}{t}

Substituting u=0 since it’s at rest, v=30m/s and t=10 seconds

a = \frac {30-0}{10}=3 m/s^{2}

(2)

From v= u + at where v is final velocity, u is initial velocity, a is acceleration and t is time.

Making a the subject we have

a=\frac {v-u}{t}

Substituting u=10m/s, v=22m/s and t=8 seconds

a = \frac {22-10}{8}=1.5 m/s^{2}

(3)

From v= u + at where v is final velocity, u is initial velocity, a is acceleration and t is time.

Making t the subject we have

t=\frac {v-u}{a}

Substituting u=0m/s since at rest, v=15m/s and a=5 \frac {m}{s^{2}}

= \frac {15-0}{5}=3s

(4)

When initial and final velocity are constant, there’s no acceleration as proven below

From v= u + at where v is final velocity, u is initial velocity, a is acceleration and t is time.

Making a the subject we have

a=\frac {v-u}{t}

Substituting u=20 since it’s at rest, v=20m/s and t=10 seconds

a = \frac {20-20}{10}=0 m/s^{2}

(5)

From v= u + at where v is final velocity, u is initial velocity, a is acceleration and t is time.

Making t the subject we have

t=\frac {v-u}{a}

Substituting u=9m/s since at rest, v=0m/s and a=-4.1 \frac {m}{s^{2}}

= \frac {0-9}{-4.1}=2.2s

8 0
2 years ago
During a rodeo, a clown runs 7.7 m north, turns 49.9 degrees east of north, and runs 6.4 m. Then after waiting for the bull to c
IRINA_888 [86]

During a rodeo, a clown runs 7.7 m north, turns 49.9 degrees east of north, and runs 6.4 m. Then after waiting for the bull to come near, the clown turns due east and runs 19.8 m to exit the arena. The magnitude of the clown’s displacement is 27 m.

<u>Explanation: </u>

As the clown is running in the north direction for about 7.7 m and then he turns 49.9 degrees east of north. In the east of north, he covers a distance of 6.4 m and then turns east to exit the arena after covering a distance of 19.8 m. Let’s have a simple diagram to easily understand the problem.

In first step, the clown runs 7.7 m in north direction, so the image will be  as in fig 1. Then he takes a direction of north east and covers a distance of 6.4 m, so the image will be modified as in fig 2. Then after the bull comes, he turns east and runs 19.8 m to exit the arena, so the image will be as in figure 3.

So, the extension of North line and the East line at a point shown as the dotted line in the above image, forms the total displacement as the hypotenuse of a right angled triangle. The extended dotted lines is nothing but the horizontal and vertical components of the angle 49.9 degree.

By using Pythagoras theorem, the total displacement can be found as

\text { Total displacement }=\sqrt{(o p p)^{2}+(a d j)^{2}}

\text { Distance covered by the clown in east direction }=(6.4 \times \cos 49.9)+19.8=23.9 \mathrm{m}

Similarly, the adjacent side of this imaginary triangle is the distance covered by the clown in the North direction.

\text { Distance covered by the clown in north direction }=6.4 \sin 49.9+7.7=12.6 \mathrm{m}

Thus, the total displacement covered by the clown is

\text { Total displacement }=\sqrt{(23.9)^{2}+(12.6)^{2}}=\sqrt{571.21+158.76}=\sqrt{729.97}=27 \mathrm{m}

Thus, the total displacement by the clown is 27 m.

5 0
3 years ago
An initially uncharged 3.47-μF capacitor and a 6.43-kΩ resistor are connected in series to a 1.50-V battery that has negligible
harkovskaia [24]

Answer: a) io=233.28 A ( initial current); b) τ=R*C= 22.31 ms; c) 81.7 ms

Explanation:  In order to explain this problem we have to use, the formule for the variation of the current in a RC circuit:

I(t)=io*Exp(-t/τ)

and also we consider that io=V/R=(1.5/6.43*10^3)

=233.28 A

then the time constant for the RC circuit is τ=R*C=6.43*10^3*3.47*10^-6

=22.31 ms

Finally the time to reduce the current to 2.57% of its initial value is obtained from:

I(t)=io*Exp(-t/τ)  for I(t)/io=0.0257=Exp(-t/τ) then

ln(0.0257)*τ =-t

t=-ln(0.0257)*τ=81.68 ms

3 0
3 years ago
Other questions:
  • 3. Ohm’s Law is represented by the equation I=V/R. Explain how the current would change if the amount of resistance decreased an
    15·1 answer
  • Calculate the power of the eye in D when viewing an object 5.70 m away. (Assume the lens-to-retina distance is 2.00 cm. Enter yo
    6·1 answer
  • If an object has a volume of 2.5mL and a mass of 10g than what is the density of an object?
    7·1 answer
  • What is the kinetic energy of a 200kg boat moving at 2.7m/s?
    8·2 answers
  • When NASA's Skylab reentered the Earth's atmosphere on July 11, 1979, it broke into a myriad of pieces. One of the largest fragm
    11·1 answer
  • A ball is tossed straight up from the surface of a small, sphericalasteroid with no atmosphere. The aball rises to a height equa
    10·1 answer
  • A person trapped outside during a thunderstorm should
    7·2 answers
  • Nombrar y explicar cada una de las Leyes de Newton
    5·1 answer
  • A rocket that has a mass of 4000 lbm travels at 27,000 ft/sec. What is most nearly its kinetic energy
    12·1 answer
  • when two resistors are wired in series with a 12 v battery, the current through the battery is 0.31 a. when they are wired in pa
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!