The equation for the de Broglie wavelength is:
<span>λ = (h/mv) √[1-(v²/c²)], </span>
<span>where h is Plank's Constant, m is the rest mass, v is velocity, and c is the velocity of light in vacuum. However, if c>>v (and it is, in this case) then the expression under the radical sign approaches 1, and the equation simplifies to: </span>
<span>λ = h/mv. </span>
<span>Substituting, (remember to convert the mass to kg, since 1 J = 1 kg·m²/s²): </span>
<span>λ = (6.63x10^-34 J·s) / (0.0459 kg) (72.0 m/s) = 2.00x10^-34 m.</span>
Answer:
B) t = 1.83 [s]
A) y = 16.51 [m]
Explanation:
To solve this problem we must use the following equation of kinematics.

where:
Vf = final velocity = 0
Vo = initial velocity = 18 [m/s]
g = gravity acceleration = 9.81 [m/s²]
t = time [s]
Note: the negative sign in the above equation means that the acceleration of gravity is acting in the opposite direction to the motion.
A) The maximum height is reached when the final velocity of the ball is zero.
0 = 18 - (9.81*t)
9.81*t = 18
t = 18/9.81
t = 1.83 [s], we found the answer for B.
Now using the following equation.

where:
y = elevation [m]
Yo = initial elevation = 0
y = 18*(1.83) - 0.5*9.81*(1.83)²
y = 16.51 [m]
Answer:
The correct answer will be "
". The further explanation is given below.
Explanation:
The potential energy will be,
⇒ 
The expression of force will be,
⇒ 
⇒ 
⇒ 
Force seems to be appealing because the expression has been negative. It therefore means that the force or substance is acting laterally in on itself.
The Primary Colors are Red Yellow and Blue