1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex
3 years ago
15

A toroidal solenoid has an inner radius of 12.0 cm and an outer radius of 15.0 cm . It carries a current of 1.50 A . Part A How

many equally spaced turns must it have so that it will produce a magnetic field of 3.75 mT at points within the coils 14.0 cm from its center? Enter your answer numerically. mastering physics
Physics
1 answer:
tensa zangetsu [6.8K]3 years ago
5 0

Answer:

The number of turns is  N  = 1750 \ turns

Explanation:

From the question we are told that

  The inner radius is r_i =  12.0 \  cm  =  0.12 \  m

   The outer radius is  r_o =  15.0 \  cm  =  0.15 \  m

   The current it carries is I =  1.50 \  A

    The magnetic field is  B  =   3.75 mT = 3.75 *10^{-3} \  T

   The distance from the center is d =  14.0 \ cm  =  0.14 \  m

Generally the number of turns is mathematically represented as

    N  =  \frac{2 *  \pi  * d  *  B}{ \mu_o *  r_o }

Generally  \mu_o is the permeability of free space with value  

    \mu_o  =  4\pi * 10^{-7} \ N/A^2

So

  N  =  \frac{2 *  3.142   * 0.14 *  3.75 *10^{-3} }{ 4\pi * 10^{-7}  * 0.15  }

  N  = 1750 \ turns

You might be interested in
A ______ is something that can be placed between the sun and the subject to diffuse the light. *
Gekata [30.6K]

Answer:

scrim

Explanation:

A scrim is something that can be placed between the sun and the subject to diffuse the light.

An instance of a diffuser is a softbox that is put on its front side around a strobe containing diffusion content. The sun is a form of hard light that is often diffused through a scrim. The light rays are dispersed by putting a scrim between the sun and the object, and the harsh sun's rays is gentler.

6 0
3 years ago
Read 2 more answers
An alpha particle (α), which is the same as a helium-4 nucleus, is momentarily at rest in a region of space occupied by an elec
vaieri [72.5K]

Answer:

Speed = 575 m/s

Mechanical energy is conserved in electrostatic, magnetic and gravitational forces.

Explanation:

Given :

Potential difference, U = $-3.45 \times 10^{-3} \ V$

Mass of the alpha particle, $m_{\alpha} = 6.68 \times 10^{-27} \ kg$

Charge of the alpha particle is, $q_{\alpha} = 3.20 \times 10^{-19} \ C$

So the potential difference for the alpha particle when it is accelerated through the potential difference is

$U=\Delta Vq_{\alpha}$

And the kinetic energy gained by the alpha particle is

$K.E. =\frac{1}{2}m_{\alpha}v_{\alpha}^2 $

From the law of conservation of energy, we get

$K.E. = U$

$\frac{1}{2}m_{\alpha}v_{\alpha}^2 = \Delta V q_{\alpha}$

$v_{\alpha} = \sqrt{\frac{2 \Delta V q_{\alpha}}{m_{\alpha}}}$

$v_{\alpha} = \sqrt{\frac{2(3.45 \times 10^{-3 })(3.2 \times 10^{-19})}{6.68 \times 10^{-27}}}$

$v_{\alpha} \approx 575 \ m/s$

The mechanical energy is conserved in the presence of the following conservative forces :

-- electrostatic forces

-- magnetic forces

-- gravitational forces

5 0
3 years ago
One nanometer is equal to how many centimeters?
Neko [114]
One nanometer = 1e-7
4 0
3 years ago
Read 2 more answers
Which type of waves from the electromagnetic spectrum are used in heat lamps and heat sensing devices?
Alex73 [517]
Infrared waves are used in heat lamps and other heat sensing devices. Infrared waves or commonly known as Infrared radiations (IR) is the type of electromagnetic radiation we encounter most in our everyday life. Heat lamps are electrical devices which emit infrared radiation.
7 0
3 years ago
Read 2 more answers
A slit has a width of W1 = 4.4 × 10-6 m. When light with a wavelength of λ1 = 487 nm passes through this slit, the width of the
Vitek1552 [10]

Answer:

The width of the central bright fringe on the screen is observed to be unchanged is 4.48*10^{-6}m

Explanation:

To solve the problem it is necessary to apply the concepts related to interference from two sources. Destructive interference produces the dark fringes.  Dark fringes in the diffraction pattern of a single slit are found at angles θ for which

w sin\theta = m\lambda

Where,

w = width

\lambda =wavelength

m is an integer, m = 1, 2, 3...

We here know that as sin\theta as w are constant, then

\frac{w_1}{\lambda_1} = \frac{w_2}{\lambda_2}

We need to find w_2, then

w_2 = \frac{w_1}{\lambda_1}\lambda_2

Replacing with our values:

w_2 = \frac{4.4*10^{-6}}{487}496

w_2 = 4.48*10^{-6}m

Therefore the width of the central bright fringe on the screen is observed to be unchanged is 4.48*10^{-6}m

3 0
3 years ago
Other questions:
  • Two tiny beads are 25 cm apart with no other charges or fields present. Bead A carries 10 µC of charge and bead B carries 1 µC.
    9·2 answers
  • Ellus
    11·1 answer
  • Which path would light follow as it travels through glass?
    5·2 answers
  • A 50 Ohm resistance causes a current of 5 milliamps to flow through a circuit connected to a battery. What is the power in the c
    6·2 answers
  • What are the elements in group iia called
    5·1 answer
  • point) A circular swimming pool has a diameter of 12 m. The circular side of the pool is 3 m high, and the depth of the water is
    15·1 answer
  • A projectile is fired with an initial speed of 37.0 m/s at an angle of 43.7 ∘ above the horizontal on a long flat firing range.
    14·1 answer
  • Im pretty sure I know which one just makin sure
    14·1 answer
  • Question 4 Multiple Choice Worth 4 points)
    13·1 answer
  • Part D
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!