Answer:
atoms cannot go bad
Explanation:
Because they stay alive and get good nutriants
Answer:
h = 4 in
Explanation:
GIVEN DATA:
volume of tin
we know that
volume of cylinder is 
so,



construct formula for surface area


minimize the function wrt h
solving for h we have
![h = [\frac{4 v}{\pi}]^{1/3}](https://tex.z-dn.net/?f=h%20%3D%20%5B%5Cfrac%7B4%20v%7D%7B%5Cpi%7D%5D%5E%7B1%2F3%7D)
we kow
so
h = 4 in
Answer : Yes, distance measurements based on the speed of light used for objects in space.
Explanation : A light year is measurement of distance that light travel in a one year.
In a one year light travels 9460000000000 kilometer.
We know that, speed of light is 
and time is 31536000 seconds in 1 year
so, distance = speed of light X time
Now, the light year is 
Example : The nearest star to earth is about 4.3 light year away.
Maybe you can split up the questions. I will try to answer your first question.
1. In an elastic collision, momentum is conserved. The momentum before the collision is equal to the momentum after the collision. This is a consequence of Newton's 3rd law. (Action = Reaction)
2. Momentum: p = m₁v₁ + m₂v₂
m₁ mass of ball A
v₁ velocity of ball A
m₂ mass of ball B
v₂ velocity of ball B
Momentum before the collision:
p = 2*9 + 3*(-6) = 18 - 18 = 0
Momentum after the collision:
p = 2*(-9) + 3*6 = -18 + 18 = 0
3: mv + m(-v) = m(-v) + m(v)
the velocities would reverse.
4.This question is not factual since the energy of an elastic collision must also be conserved. The final velocities should be: v₁ = -1 m/s and v₂ = 5 m/s. That said assuming the given velocities were correct:
before collision
p = 10*3 + 5*(-3) = 30 - 15 = 15
after collision:
p = 10*(-2) + 5 * v₂ = 15
v₂ = 7
5.You figure out.