Answer:
The kinetic energy of the more massive ball is greater by a factor of 2.
Explanation:
By conservation of energy, we know that the initial energy = final energy. At first, the balls are dropped from a height with no initial velocity so their initial energy is all potential energy. When they reach the bottom, all their energy is kinetic energy. So all of their energy is changed from potential to kinetic energy. This means that the ball with greater potential energy will have a greater kinetic energy.
Potential energy = mgh. Since g = gravity is a constant and h = height is the same, the only difference is mass. Since mass is directly proportional to potential energy, the greater the mass, the greater the potential energy, so the more massive ball has a greater initial potential energy and will have a greater kinetic energy at the bottom.
Additionally, let B1 = lighter ball with mass m and let B2 = heavier ball with mass m2. Since we know that intial potential energy = final kinetic energy. We can rewrite it as potential energy = kinetic energy = mass * gravity constant * height. For B1, it is mgh and for B2 it is 2mgh, so B2's kinetic energy is twice that of B1.
A. Because they reflect their color and absorb all the others
The diagram is missing; however, we know that the intensity of a sound wave is inversely proportional to the square of the distance from the source:

where I is the intensity and r is the distance from the source.
We can assume for instance that the initial distance from the source is r=1 m, so that we put

The intensity at r=3 m will be

Therefore, the sound intensity has decreased by a factor

.
The correct answer to this qustion is velocity and time
The acceleration due to gravity of the planet X is 1 m/s².
The given parameters;
- height above the ground, h = 100 m
- initial velocity of the rock, u = 15 m/s
- time of motion of the rock, t = 10 s
The acceleration due to gravity is calculated as follows;

Thus, the acceleration due to gravity of the planet X is 1 m/s²
Learn more here: brainly.com/question/24564606