Answer:
The air fraction to be removed is 0.11
Given:
Initial temperature, T =
= 283 K
Pressure, P = 250 kPa
Finally its temperature increases, T' =
= 318 K
Solution:
Using the ideal gas equation:
PV = mRT
where
P = Pressure
V = Volume
m = no. of moles of gas
R = Rydberg's Constant
T = Temperature
Now,
Considering the eqn at constant volume and pressure, we get:
mT = m'T'
Thus
(1)
Now, the fraction of the air to be removed for the maintenance of pressure at 250 kPa:

From eqn (1):


For a star that has the same apparent brightness as Alpha Centauri A ( 2.7×10−8watt/m2 is mathematically given as
L=2.7*10^30w
<h3> What is its luminosity?</h3>
Generally, the equation for the luminosity is mathematically given as
L=4*\pi^2*b
Therefore
L=4*\pi^2*b
L=4* \pi *(2.83*10^{18})*2.7*10^{-8}
L=2.7*10^30
In conclusion, the luminosity
L=2.7*10^30w
Read more about Light
brainly.com/question/25770676