Answer:
This reaction is exothermic because the system shifted to the left on heating.
Explanation:
2NO₂ (g) ⇌ N₂O₄(g)
Reactant => NO₂ (dark brown in color)
Product => N₂O₄ (colorless)
From the question given above, we were told that when the reaction at equilibrium was moved from room temperature to a higher temperature, the mixture turned dark brown in color.
This simply means that the reaction does not like heat. Hence the reaction is exothermic reaction.
Also, we can see that when the temperature was increased, the reaction turned dark brown in color indicating that the increase in the temperature favors the backward reaction (i.e the equilibrium shift to the left) as NO₂ which is the reactant is dark brown in color. This again indicates that the reaction is exothermic because an increase in the temperature of an exothermic reaction will shift the equilibrium position to the left.
Therefore, we can conclude that:
The reaction is exothermic because the system shifted to the left on heating.
Answer:
Explanation:
<u>1) Data:</u>
a) V = 93.90 ml
b) T = 28°C
c) P₁ = 744 mmHg
d) P₂ = 28.25 mmHg
d) n = ?
<u>2) Conversion of units</u>
a) V = 93.90 ml × 1.000 liter / 1,000 ml = 0.09390 liter
b) T = 28°C = 28 + 273.15 K = 301.15 K
c) P₁ = 744 mmHg × 1 atm / 760 mmHg = 0.9789 atm
d) P₂ = 28.5 mmHg × 1 atm / 760 mmHg = 0.0375 atm
<u>3) Chemical principles and formulae</u>
a) The total pressure of a mixture of gases is equal to the sum of the partial pressures of each gas. Hence, the partical pressure of the hydrogen gas collected is equal to the total pressure less the vapor pressure of water.
b) Ideal gas equation: pV = nRT
<u>4) Solution:</u>
a) Partial pressure of hydrogen gas: 0.9789 atm - 0.0375 atm = 0.9414 atm
b) Moles of hygrogen gas:
pV = nRT ⇒ n = pV / (RT) =
n = (0.9414 atm × 0.09390 liter) / (0.0821 atm-liter /K-mol × 301.15K) =
n = 0.00358 mol (which is rounded to 3 significant figures) ← answer
Answer:
Explanation:
The relation between frequency and wavelength is shown below as:
c is the speed of light having value
Given, Frequency = 103.4 MHz =
( as 1 MHz = 10⁶ Hz)
Thus, Wavelength is:
Density is a physical property. It's measured and doesn't change the object chemically.