Answer:
108.81 K
Explanation:
First convert 17 °C to Kelvin:
Assuming ideal behaviour, we can solve this problem by using the<em> combined gas law</em>, which states that at constant composition:
Where in this case:
We <u>input the data</u>:
- 800 torr * 100 L * T₂ = 600 torr * 50 L * 290.16 K
And <u>solve for T₂</u>:
Answer:
The base must be ethylamine.
Explanation:
The pH of solution of a weak base gives us an idea about the Kb of the base.


![pOH=-log[OH^{-}]](https://tex.z-dn.net/?f=pOH%3D-log%5BOH%5E%7B-%7D%5D)
![[OH^{-}]=0.0062M](https://tex.z-dn.net/?f=%5BOH%5E%7B-%7D%5D%3D0.0062M)
The relation between Kb and hydroxide ion concentration is:
![Kb=\frac{[OH^{-}]^{2}}{[base]}](https://tex.z-dn.net/?f=Kb%3D%5Cfrac%7B%5BOH%5E%7B-%7D%5D%5E%7B2%7D%7D%7B%5Bbase%5D%7D)

Thus the weak base must be ethylamine.
By weight the hydroxides are 45.9% of the weight
Answer is C. 2, 3 and 5 shows how as the number of carbon increase, butane, pentane and hexane (4,5 and 6 carbons) the octane number does decrease
False cause they give the truth in a disguise