Phosgene on reacting with <span>phenylmagnesium bromide generates
benzoyl chloride.
Since, </span>phenylmagnesium bromide is added in excess. It would further react with benzoyl chloride to form
benzophenone.
Benzophenone on further reacting with phenylmagnesium bromide, and aqueous treatment, gives
triphenylmethanol.
Entire reaction pathways is shown below:
15. D is correct, exothermic reactions release heat
I am not sure about 16
Acid Sorry if I am wrong but I am pretty positive it’s acid
Answer:
i) CCl₄ and Br₂ does not react
ii) CBr₄ + Cl₂ → CCl₄ + Br₂
Explanation:
i) CCl₄ + Br₂ (no reaction)
From the given activity series, we have that chlorine gas, Cl₂, is more reactive than bromine gas, Br₂, therefore, a reaction of CCl₄ + Br₂ will not have a reaction as the propensity for the chlorine to stay combined with the carbon is higher than the ability for bromine to remain combined with or attract the carbon. Therefore, for CCl₄ + Br₂ there is no reaction
ii) CBr₄ + Cl₂
From the given activity series, we have that chlorine gas, Cl₂, is more reactive than bromine gas, Br₂, therefore, a reaction of CBr₄ + Cl₂ will give products that will have the Br in the CBr₄ replaced by the Cl₂ as follows;
CBr₄ + Cl₂ → CCl₄ + Br₂
The products of the reaction of CBr₄ and Cl₂ are therefore CBr₄ and Cl₂.
Electrons are electrochemically negatively charged particles that move random around the nucleus. They have a relatively small mass compared to Protons and Neutrons. They are found in electron clouds that surround the nucleus and their movement and properties provide for the bonding characteristics of each atom.