Answer:
No
Explanation:
The reason why no current is produced are basically that, the wavelengths of light in the Balmer transition are reflected, not absorbed in solar panels, hence no current is produced.
The Balmer series consists of lines in the visible spectrum. It corresponds to emission of a photon of light when electrons descend from higher energy levels to the n=2 level in the hydrogen spectrum. The various wavelengths in the Balmer series can be separated by a prism since they are all in the visible region of the electromagnetic spectrum.
In solar panels, light corresponding to the wavelengths in the Balmer series is merely reflected by the panel and not absorbed. Since light is not absorbed, no current can be produced when the panel is irradiated with light corresponding to the wavelengths in the Balmer series.

- P is power
- R is resistance

Hence


- Therefore if power is low then resistance will be high.
The first bulb has less power hence it has greater filament resistance.
Ok i apologise for the messy working but I'll try and explain my attempt at logic
Also note i ignore any air resistance for this.
First i wrote the two equations I'd most likely need for this situation, the kinetic energy equation and the potential energy equation.
Because the energy right at the top of the swing motion is equal to the energy right in the "bottom" of the swing's motion (due to conservation of energy), i made the kinetic energy equal to the potential energy as indicated by Ek = Ep.
I also noted the "initial" and "final" height of the swing with hi and hf respectively.
So initially looking at this i thought, what the heck, there's no mass. Then i figured that using the conservation of energy law i could take the mass value from the Ek equation and use it in the Ep equation. So what i did was take the Ek equation and rearranged it for m as you can hopefully see. Then i substituted the rearranged Ek equation into the Ep equation.
So then the equation reads something like Ep = (rearranged Ek equation for m) × g (which is -9.81) × change in height (hf - hi).
Then i simplify the equation a little. When i multiply both sides by v^2 i can clearly see that there is one E on each side (at that stage i don't need to clarify which type of energy it is because Ek = Ep so they're just the same anyway). So i just canceled them out and square rooted both sides.
The answer i got was that the max velocity would be 4.85m/s 3sf, assuming no losses (eg energy lost to friction).
I do hope I'm right and i suppose it's better than a blank piece of paper good luck my dude xx
Answer: I think its 120
Explanation: thx for the free points :)
There are 120 seconds in two minutes, so to find the answer, you multiply 20 x 120 to get 2400 meters.