Answer: a) the greater speed for the ball is getting with the large radius of the circle. b) 1.68* 10 ^3 m/s^2 c) 1.25*10^3 m/s^2
Explanation: In order to solve this problem firstly we have to consider that speed in a of the circular movement is directly the angular rotation multiply the radius of the circle so by this we found that the second radius get large speed.
Secondly to calculate the centripetal acceleration for the ball we have to considerer the relationship given by:
acceleration in a circular movement= ω^2*r
so
a1= (8.44 *2*π)^2*r1=1.68 *10^3 m/s^2
a2= (5.95*2*π)^2*r2=1.25*10^3 m/s^2
Answer: The speed necessary for the electron to have this energy is 466462 m/s
Explanation:
Kinetic energy is the energy posessed by an object by virtue of its motion.

K.E= kinetic energy = 
m= mass of an electron = 
v= velocity of object = ?
Putting in the values in the equation:


The speed necessary for the electron to have this energy is 466462 m/s
There are 120 seconds in two minutes, so to find the answer, you multiply 20 x 120 to get 2400 meters.
Answer:
The moon is 400x smaller but it's also 400x closer so it looks the same size even though it's not
Explanation: