DibujaZos da buenos tips e incluso el pinta con colores faber castel son económicos y el dibujo queda epico
Answer:
10 m/s²
Explanation:
Acceleration: This the rate of change of velocity. The unit of acceleration is m/s²
From the question,
a = (v-u)/t.................... Equation 1
Where a = acceleration of the cheetah, v = final velocity of the cheetah, u = initial velocity of the cheetah, t = time.
Given: u = 0 m/s, v = 25 m/s, t = 2.5 s.
Substitute these values into equation 1
a = (25-0)/2.5
a = 25/2.5
a = 10 m/s²
Hence the acceleration of the cheetah = 10 m/s²
Answer:
The highest percentage of change corresponds to the thinnest rod, the correct answer is a
Explanation:
For this exercise we are asked to change the length of the bar by the action of a force applied along its length, in this case we focus on the expression of longitudinal elasticity
F / A = Y ΔL/L
where F / A is the force per unit length, ΔL / L is the fraction of the change in length, and Y is Young's modulus.
In this case the bars are made of the same material by which Young's modulus is the same for all
ΔL / L = (F / A) / Y
the area of the bar is the area of a circle
A = π r² = π d² / 4
A = π / 4 d²
we substitute
ΔL / L = (F / Y) 4 /πd²
changing length
ΔL = (F / Y 4 /π) L / d²
The amount between paracentesis are all constant in this exercise, let's look for the longitudinal change
a) values given d and 3L
ΔL = cte 3L / d²
ΔL = cte L /d² 3
To find the percentage, we must divide the change in magnitude by its value and multiply by 100.
ΔL/L % = [(F /Y 4/π 1/d²) 3L ] / 3L 100
ΔL/L % = cte 100%
b) 3d and L value, we repeat the same process as in part a
ΔL = cte L / 9d²
ΔL = cte L / d² 1/9
ΔL / L% = cte 100/9
ΔL / L% = cte 11%
c) 2d and 2L value
ΔL = (cte L / d ½
)/ 2L
ΔL/L% = cte 100/4
ΔL/L% = cte 25%
d) value 4d and L
ΔL = cte L / d² 1/16
ΔL/L % = cte 100/16
ΔL/L % = cte 6.25%
The highest percentage of change corresponds to the thinnest rod, the correct answer is a
Iron rich minerals in rock pointed in one direction the switch to the exact opposite direction. I'd say that what supports this idea is that Earth's magnetic field goes through pole reversals.<span>
</span>
Answer:
Explanation:
The law of inertia states that if an object is in motion will remain in motion unless an external force is applied to it.
law of inertia for the rotating system in terms of angular momentum states that the angular momentum of a system will remain the same unless an external torque is applied to the system.
External Torque either increases or decreases the angular velocity thus changing angular momentum.