11m if you add 6+5 you get 11 but of course you need the “m” in the mix so 11m but correct me if I’m wrong.
Answer:
your answer is: electron → carbon atom → quantum dot → E. coli bacteria cell → comma
Explanation:
Answer:
maximumforce is F = mg
Explanation:
For this case we must use Newton's second law,
Σ F = m a
bold indicate vectors, so we will write it in its components x and y
X axis
Fₓ = maₓ
Axis y
Fy - W = m a
Now let's examine our case, with indicate that the bird is level, the force of the wings can have a measured angle with respect to the x axis, where the vertical component is responsible for the lift, let's use trigonometry to find the components
Cos θ = Fₓ / F
Fₓ = F cos θ
sin θ = Fy / F
Fy = F sin θ
Let's replace and calculate
F sin θ -w = m a
As the bird indicates that leveling at the same height, so the vertical acceleration is zero (ay = 0)
F sin θ = w = mg
The maximum value of this equation occurs when the sin=1, in this case
F = mg
The answer is 10,560 Joules or 1.1*10^4
Explanation:
Step 1: Calculate
The equation for Kinetic Energy is
Kinetic energy=.5 times Mass times Velocity²
KE=.5*m*v²
so we plug in our numbers
KE=.5*600*35.2²
This works out to be 10,560 Joules or 1.1*10^4
Answer:
a) f ’’ = f₀
, b) Δf = 2 f₀ 
Explanation:
a) This is a Doppler effect exercise, which we must solve in two parts in the first the emitter is fixed and in the second when the sound is reflected the emitter is mobile.
Let's look for the frequency (f ’) that the mobile aorta receives, the blood is leaving the aorta or is moving towards the source
f ’= fo
This sound wave is reflected by the blood that becomes the emitter, mobile and the receiver is fixed.
f ’’ = f’
where c represents the sound velocity in stationary blood
therefore the received frequency is
f ’’ = f₀
let's simplify the expression
f ’’ = f₀ \frac{c+v}{c-v}
f ’’ = f₀
b) At the low speed limit v <c, we can expand the quantity
(1 -x)ⁿ = 1 - x + n (n-1) x² + ...
f ’’ = fo
f ’’ = fo 
leave the linear term
f ’’ = f₀ + f₀ 2
the sound difference
f ’’ -f₀ = 2f₀ v/c
Δf = 2 f₀ 