Answer:
95 J
Explanation:
You can calculate efficiency by dividing useful output by total input, then multiplying it to 100.
So the foumula goes like:
Efficiency= (Useful output/Total input)x100
In this question,
Efficiency= 95%
Useful output= x
Total input= 200
Therefore;
95=(x/200)x100
0.95=x/100
x=0.95x100
x=95 Joules
<span>The 2nd truck was overloaded with a load of 16833 kg instead of the permissible load of 8000 kg.
The key here is the conservation of momentum.
For the first truck, the momentum is
0(5100 + 4300)
The second truck has a starting momentum of
60(5100 + x)
And finally, after the collision, the momentum of the whole system is
42(5100 + 4300 + 5100 + x)
So let's set the equations for before and after the collision equal to each other.
0(5100 + 4300) + 60(5100 + x) = 42(5100 + 4300 + 5100 + x)
And solve for x, first by adding the constant terms
0(5100 + 4300) + 60(5100 + x) = 42(14500 + x)
Getting rid of the zero term
60(5100 + x) = 42(14500 + x)
Distribute the 60 and the 42.
60*5100 + 60x = 42*14500 + 42x
306000 + 60x = 609000 + 42x
Subtract 42x from both sides
306000 + 18x = 609000
Subtract 306000 from both sides
18x = 303000
And divide both sides by 18
x = 16833.33
So we have the 2nd truck with a load of 16833.33 kg, which is well over it's maximum permissible load of 8000 kg. Let's verify the results by plugging that mass into the before and after collision momentums.
60(5100 + 16833.33) = 60(21933.33) = 1316000
42(5100 + 4300 + 5100 + 16833.33) = 42(31333.33) = 1316000
They match. The 2nd truck was definitely over loaded.</span>
To calculate the gravitational force acting on an object given the mass and the acceleration due to gravity, use the following formula.
Fg = m • g
Fg = 1.3 kg • 9.8 m/s^2
Fg = 12.74 N or about 12.7 N.
The solution is C. 12.7 N.
The answer is C. <span>Light travels at different speeds in water and in glass.</span>
Answer:
The work done on the athlete is approximately 2.09 J
Explanation:
From the definition of the work done by a variable force:

and substituting with the function of our problem:
