1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nordsb [41]
3 years ago
8

A clever inventor has created a device that can launch water balloons with an initial speed of 85.0 m/s. Her goal is to pass a b

alloon through a small hoop mounted on the observation platform at the top of the Eiffel Tower, 276 m above the ground. If the balloon is to pass through the hoop at the peak of its flight, at what angle above horizontal should she launch the balloon? Please explain step by step

Physics
1 answer:
seropon [69]3 years ago
6 0

Answer:

She should launch the balloon at an angle of 59.9° above the horizontal.

Explanation:

Please, see the attached figure for a graphical description of the problem.

The position and velocity vectors of the water balloon at time "t" can be obtained using the following equations:

r = (x0 + v0 · t · cos θ, y0 + v0 · t · sin θ + 1/2 · g · t²)

v = (v0 · cos θ, v0 · sin θ + g · t)

Where:

r = position vector at time "t".

x0 = initial horizontal position.

v0 = initial velocity.

t = time.

θ = launching angle.

y0 = initial vertical position.

g = acceleration due to gravity (-9.81 m/s² considering the upward direction as positive).

v = velocity vector at time "t".

Let´s place the origin of the frame of reference at the launching point so that x0 and y0 = 0.

At the maximum height (276 m), the vector velocity of the balloon is horizontal (see v1 in the figure). That means that the y-component of the velocity vector is 0. Then, using the equation of the y-component of the velocity vector, we can write:

At maximum height:

vy = v0 · sin θ + g · t

0 = v0 · sin θ + g · t

We also know that at maximum height, the y-component of the position vector is 276 m (see r1y in the figure). Then:

At maximum height:

y = y0 + v0 · t · sin θ + 1/2 · g · t²  

276 m = y0 + v0 · t · sin θ + 1/2 · g · t²

So, we have two equations with two unknowns (θ and t):

276 m = y0 + v0 · t · sin θ + 1/2 · g · t²

0 = v0 · sin θ + g · t

To solve the system of equations, let´s take the equation of the y-component of the velocity and solve it for sin θ. Then, we will replace sin θ in the equation of the y-component of the position to obtain the time and finally obtain θ:

0 = v0 · sin θ + g · t

0 = 85.0 m/s · sin θ - 9.81 m/s² · t

9.81 m/s² · t / 85.0 m/s = sin θ

Replacing sin θ in the equation of the vertical component of the position:

276 m = y0 + v0 · t · sin θ + 1/2 · g · t²    (y0 = 0)

276 m = 85.0 m/s · t · (9.81 m/s² · t /85. 0 m/s) - 1/2 · 9.81 m/s² · t²

276 m = 9.81 m/s² · t² - 1/2 · 9.81 m/s² · t²

276 m = 1/2 · 9.81 m/s² · t²

276 m / ( 1/2 · 9.81 m/s²) = t²

t = 7.50 s

Now, we can calculate the angle θ using the equation obtained above:

9.81 m/s² · t / 85.0 m/s = sin θ

9.81 m/s² · 7.50 s / 85.0 m/s = sin θ

θ = 59.9°

She should launch the balloon at an angle of 59.9° above the horizontal.

You might be interested in
Which of the following correctly describes the relationship between current and voltage as the voltage of a battery increases. R
Y_Kistochka [10]

Answer:_COC1\/2+_H\/2O>_HC1+CO\/2

Explanation:

Need help asap

3 0
2 years ago
Oppositely charged objects attract each other. This attraction holds electrons in atoms and holds atoms to one another in many c
GalinKa [24]

Answer and Explanation:

This can be explained as in Rutherford's model of atom the electrons orbits the nucleus which means that they will travel around the nucleus with some velocity and hence radiate electromagnetic waves which results in the loss of energy due to which the electron keeps coming closer and eventually falls into the nucleus.

But Bohr came up with a better explanation as according to the Bohr's atomic model, electrons stay fixed in orbit with certain energy in different shells around the nucleus and can only jump from an energy level to another if that specific amount of energy is supplied to it.

This model is based on the quantization of energy thus giving an explanation why electrons do not fall into the nucleus of an atom.

6 0
3 years ago
Read 2 more answers
Give reasons.<br>A stone thrown upward returns back to the earth surface.​
Wittaler [7]

Answer:

Gravity

Explanation:

Due to earths gravity, anything that goes into the air returns back to the surface unless it is given the ability to fly.

Hope this helps!

7 0
3 years ago
Starting from rest, a basketball rolls from the top to the bottom of a hill, reaching a translational speed of 6.1 m/s. Ignore f
tatiyna

Answer:

a) h=3.16 m, b)  v_{cm }^ = 6.43 m / s

Explanation:

a) For this exercise we can use the conservation of mechanical energy

Starting point. Highest on the hill

           Em₀ = U = mg h

final point. Lowest point

           Em_{f} = K

Scientific energy has two parts, one of translation of center of mass (center of the sphere) and one of stationery, the sphere

           K = ½ m v_{cm }^{2} + ½ I_{cm} w²

angular and linear speed are related

           v = w r

           w = v / r

            K = ½ m v_{cm }^{2} + ½ I_{cm} v_{cm }^{2} / r²

            Em_{f} = ½ v_{cm }^{2} (m + I_{cm} / r2)

as there are no friction losses, mechanical energy is conserved

             Em₀ = Em_{f}

             mg h = ½ v_{cm }^{2} (m + I_{cm} / r²)         (1)

             h = ½ v_{cm }^{2} / g (1 + I_{cm} / mr²)

for the moment of inertia of a basketball we can approximate it to a spherical shell

             I_{cm} = ⅔ m r²

we substitute

            h = ½ v_{cm }^{2} / g (1 + ⅔ mr² / mr²)

            h = ½ v_{cm }^{2}/g    5/3

             h = 5/6 v_{cm }^{2} / g

           

let's calculate

           h = 5/6 6.1 2 / 9.8

           h = 3.16 m

b) this part of the exercise we solve the speed of equation 1

          v_{cm }^{2} = 2m gh / (1 + I_{cm} / r²)

in this case the object is a frozen juice container, which we can simulate a solid cylinder with moment of inertia

              I_{cm} = ½ m r²

we substitute

             v_{cm } = √ [2gh / (1 + ½)]

             v_{cm } = √(4/3 gh)

let's calculate

             v_{cm } = √ (4/3 9.8 3.16)

             v_{cm }^ = 6.43 m / s

4 0
3 years ago
What is the effect of pressure on the solubility of gases in liquids?
34kurt
The solubility of gases in liquids increases with the increase in pressure.
3 0
3 years ago
Other questions:
  • A soccer player kicks a ball down the field. It rolls to a stop just before the goal. Which statement accurately describes the m
    15·1 answer
  • What is the state of the matter of fire?
    7·2 answers
  • A ball is thrown with an initial speed of 10. Meters per second. At what angle above the horizontal should the ball be thrown to
    13·2 answers
  • a man exerts 3000.00N of force to push a car 35.00 meters in 90.00 seconds.... 1. what is the work done 2.what is the power gene
    7·1 answer
  • You are on a train going north and you see a car going north too, but it appears to be heading backwards, why?
    9·1 answer
  • 1.
    9·1 answer
  • Find the unbalanced force acting on the object.
    10·1 answer
  • Which by freud domain would cover bullying
    7·1 answer
  • a box is pushed 40 m by a mover. the amount of work done was 2,240j. how much force was exerted on the box a box is pushed 40 m
    11·2 answers
  • Light passes through a single slit. If the width of the slit is reduced, what happens to the width of the central bright fringe
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!