Answer:
To calculate displacement, simply draw a vector from your starting point to your final position and solve for the length of this line. If your starting and ending position are the same, like your circular 5K route, then your displacement is 0. In physics, displacement is represented by Δs.
Explanation:
hope helps
Answer:

Explanation:
= normal force acting on the coin
Normal force in the upward direction balances the weight of the coin, hence

= frequency of rotation
Angular velocity of turntable is hence given as

= distance from the axis of rotation
= minimum coefficient of static friction
static frictional force is given as

The static frictional force provides the necessary centripetal force , hence
Centripetal force = Static frictional force

A simple rule to bear in mind is that all objects (regardless of their mass) experience the same acceleration when in a state of free fall. When the only force is gravity, the acceleration is the same value for all objects. On Earth, this acceleration value is 9.8 m/s/s.
Answer:
≈ 2.1 R
Explanation:
The moment of inertia of the bodies can be calculated by the equation
I = ∫ r² dm
For bodies with symmetry this tabulated, the moment of inertia of the center of mass
Sphere
= 2/5 M R²
Spherical shell
= 2/3 M R²
The parallel axes theorem allows us to calculate the moment of inertia with respect to different axes, without knowing the moment of inertia of the center of mass
I =
+ M D²
Where M is the mass of the body and D is the distance from the center of mass to the axis of rotation
Let's start with the spherical shell, axis is along a diameter
D = 2R
Ic =
+ M D²
Ic = 2/3 MR² + M (2R)²
Ic = M R² (2/3 + 4)
Ic = 14/3 M R²
The sphere
Is =
+ M [
²
Is = Ic
2/5 MR² + M
² = 14/3 MR²
² = R² (14/3 - 2/5)
= √ (R² (64/15)
= 2,066 R
Radiation. That's perhaps the only way that energy gets from the Sun to the earth. The space between the two is a vacuum, so conduction is more or less out as is convection. There's no obvious sign of mirrors, so reflection seems to be out as well.