The sun <u><em>appears</em></u> brighter than any other star.
(It isn't really, but it looks that way because it's much much much much much much closer to us than any other star.)
The answer for this question should be "false".
The centripetal force on the car as it goes around the second curve is twice that compared to the first.
What is Centripetal force?
It is the force that is necessary to keep an object moving in a curved path and that is directed inward toward the center of rotation.
The formula of Centripetal force is:
F(c) = (m* v^2) / r
Here,
At the first curve,
The curve of radius = r
The constant speed = v
At the second curve,
The car speed (v')= 2 v
The radius of the curve (r')=2 r
According to the formula of centripetal Force:
As the car goes around the second curve,
F'(c) = m*v'^2 / r'
F'(c) = m* (2*v)^2 / 2r
F'(c) = 2* F
Thus,
The centripetal force on the car as it goes around the second curve is twice that compared to the first.
Learn more about centripetal force here:
<u>brainly.com/question/14317060</u>
#SPJ4
No it won't. It'll vary inversely as the square of the separation.
Answer:D.Refractive Indez
Explanation:
It is usually expressed the other way: the ratio of the speed of light in a vacuum to the speed of light in a medium. In that case, it is called the "index of refraction".