TLDR: It will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.
This is an example that requires you to investigate the properties that occur in electric generators; for example, hydroelectric dams produce electricity by forcing a coil to rotate in the presence of a magnetic field, generating a current.
To solve this, we need to understand the principles of electromotive forces and Lenz’ Law; changing the magnetic field conditions around anything with this potential causes an induced current in the wire that resists this change. This principle is known as Lenz’ Law, and can be described using equations that are specific to certain situations. For this, we need the two that are useful here:
e = -N•dI/dt; dI = ABcos(theta)
where “e” describes the electromotive force, “N” describes the number of loops in the coil, “dI” describes the change in magnetic flux, “dt” describes the change in time, “A” describes the area vector of the coil (this points perpendicular to the loops, intersecting it in open space), “B” describes the magnetic field vector, and theta describes the angle between the area and mag vectors.
Because the number of loops remains constant and the speed of the coils rotation isn’t up for us to decide, the only thing that can increase or decrease the emf is the change in magnetic flux, represented by ABcos(theta). The magnetic field and the size of the loop are also constant, so all we can control is the angle between the two. To generate the largest emf, we need cos(theta) to be as large as possible. To do this, we can search a graph of cos(theta) for the highest point. This occurs when theta equals 90 degrees, or a right angle. Therefore, the electromotive potential will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.
Hope this helps!
<em>The correct option is </em><em>A</em>. The information we know about the known exoplanets is estimates of orbits and masses.
<h3>What is exoplanets?</h3>
An exoplanet or extrasolar planet is a planet outside the Solar System.
In other words, exoplanet is any planet beyond our solar system.
<h3>Characteristics of exoplanets</h3>
exoplanets are known for the following characteristics;
- they are usually hot
- they can orbit their stars so tightly that a “year” lasts only a few days
- they can orbit two suns at once
Thus, the information we know about the known exoplanets is estimates of orbits and masses.
Learn more about exoplanets here: brainly.com/question/1514493
#SPJ1
Answer:
4.9 x 10^-19 J, 2.7 x 10^-19 J
Explanation:
first wavelength, λ1 = 410 nm = 410 x 10^-9 m
Second wavelength, λ2 = 750 nm = 750 x 10^-9 m
The relation between the energy and the wavelength is given by
E = h c / λ
Where, h is the Plank's constant and c be the velocity of light.
h = 6.63 x 10^-34 Js
c = 3 x 10^8 m/s
So, energy correspond to first wavelength
E1 = (6.63 x 10^-34 x 3 x 10^8) / (410 x 10^-9) = 4.85 x 10^-19 J
E1 = 4.9 x 10^-19 J
So, energy correspond to second wavelength
E2 = (6.63 x 10^-34 x 3 x 10^8) / (750 x 10^-9) = 2.652 x 10^-19 J
E2 = 2.7 x 10^-19 J
Solution :
Speed of the air craft,
= 262 m/s
Fuel burns at the rate of,
= 3.92 kg/s
Rate at which the engine takes in air,
= 85.9 kg/s
Speed of the exhaust gas that are ejected relative to the aircraft,
=921 m/s
Therefore, the upward thrust of the jet engine is given by

F = 85.9(921 - 262) + (3.92 x 921)
= 4862635.79 + 3610.32
= 
Therefore thrust of the jet engine is
.
Answer:
Soldering is a technique or a process to bond metals with the help of solder. Solder is a metal alloy with a low melting point and is often regarded as the base metal for soldering. The piece or structure that is being bonded together does not get hot enough to melt and this is where solder (base metal) comes into play and creates the connection.
Explanation:
<em>Hope this helps :)</em>
<em>Pls mark brainliest :3 </em>
<em>And have an amazing day <3 </em>