Answer:
3853 g
Step-by-step explanation:
M_r: 107.87
16Ag + S₈ ⟶ 8Ag₂S; ΔH°f = -31.8 kJ·mol⁻¹
1. Calculate the moles of Ag₂S
Moles of Ag₂S = 567.9 kJ × 1 mol Ag₂S/31.8kJ = 17.858 mol Ag₂S
2. Calculate the moles of Ag
Moles of Ag = 17.86 mol Ag₂S × (16 mol Ag/8 mol Ag₂S) = 35.717 mol Ag
3. Calculate the mass of Ag
Mass of g = 35.717 mol Ag × (107.87 g Ag/1 mol Ag) = 3853 g Ag
You must react 3853 g of Ag to produce 567.9 kJ of heat
Answer:
Sonic has your answer The atomic mass is the mass of an atom. Although the SI unit of mass is kilogram, the atomic mass is often expressed in the non-SI unit dalton where 1 dalton is defined as ¹⁄₁₂ of the mass of a single carbon-12 atom, at res
Answer: i really dont know srry
Explanation:
Answer: D. Sublimation
Explanation: I just took the test.
a) 1 mole of Ne
b) i/2 mole of Mg
c) 1570 moles of Pb.
d) 2.18125*10^-13 moles of oxygen.
Explanation:
The number of moles calculated by Avogadro's number in 6.23*10^23 of Neon.
6.23*10^23= 1/ 6.23*10^23
= 1 mole
The number of moles calculated by Avogadro's number in 3.01*10^23 of Mg
3.2*10^23=1/6.23*10^23
= 1/2 moles of Pb.
Number of moles in 3.25*10^5 gm of lead.
atomic weight of Pb=
n=weight/atomic weight
= 3.25*10^5/ 207
= 1570 moles of Pb.
Number of moles 4.50 x 10-12 g O
number of moles= 4.50*10^-12/16
= 2.18125*10^-13 moles of oxygen.