Newton's second law of motion can be formally stated as follows:
The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.
This verbal statement can be expressed in equation form as follows:
a = Fnet / m
The correct answer is B. Water that has condensed and formed water droplets on the ground, grass, and other outdoor objects is known as dew. It is water formed due to condensation in early morning or evening. It is formed when the temperature of the objects reach below the dew point of the air around.
A nuclear reaction<span> in which two or more atomic nuclei come very close and then collide at a very high speed and join to form a new type of atomic nucleus.
Hope this helps :)
</span>
Answer:
Mechanical advantage = load/<u>effort</u>
Explanation:
Mechanical advantage is like a ratio of load to effort and many machines like pulleys depend on this relationship between load and effort for it to work.
Missing in your question:
Picture (1)
when its an open- tube manometer and the h = 52 cm.
when the pressure of the atmosphere is equal the pressure of the gas plus the pressure from the mercury column 52 Cm so, we can get the pressure of the gas from this formula:
P(atm) = P(gas) + height (Hg)
∴P(gas) = P(atm) - height (Hg)
= 0.975 - (520/760)
= 0.29 atm
Note: I have divided 520 mm Hg by 760 to convert it to atm
Picture (2)
The pressure of the gas is the pressure experts by the column of mercury and when we have the Height (Hg)= 67mm
So the pressure of the gas =P(atm) + Height (Hg)
= 0.975 + (67/ 760) = 1.06 atm
Picture (3)
As the tube is closed SO here the pressure of the gas is equal the height of the mercury column, and when we have the height (Hg) = 103 mm. so, we can get the P(gas) from this formula:
P(gas) = Height(Hg)
= (103/760) = 0.136 atm