<h2><u>QUE</u><u>STION</u></h2>
It refers to a charged particle or atom.
<h2><u>CHOI</u><u>CES</u></h2>
<u>A.</u><u> </u><u>molecule</u>
B. bromine
C. potassium
D. sulfur
<h2><u>ANSWER</u></h2>
<h3><u>C</u><u>.</u><u> </u><u>pottasium</u></h3>
Assume ideal gas behavior, then solve for the total number of moles:
PV = nRT
(5.50 atm)(10 L) = n(0.0821 L-atm/mol-K)(23+273 K)
n = 2.263 mol
Moles methane: 8 g ÷ 16.04 g/mol = 0.499 mol
Moles ethane: 18 g ÷ 30.07 g/mol = 0.599 mol
Moles propane: 2.263 - (0.499+0.599) = 1.165 mol
Applying Raoult's Law:
Partial pressure = Mole fraction * Total Pressure
<em>Partial Pressure of Methane = (0.499/2.263)(5.5 atm) = 1.21 atm</em>
<em>Partial Pressure of Ethane = (0.599/2.263)(5.5 atm) = 1.46 atm</em>
<em>Partial Pressure of Propane = (1.165/2.263)(5.5 atm) = 2.83 atm</em>
Answer:
The answer to your question is below
Explanation:
Data
Volume = 1000 ml
Concentration = 2M
molecule = NaCl
Process
1.- Calculate the number of moles of NaCl
Molarity = moles/Volume
-Solve for volume
moles = Molarity x Volume (liters)
-Substitution
moles = 2 x 1
-Result
moles = 2
2.- Determine the molar mass of NaCl
NaCl = 23 + 35.5 = 58.5 g
3.- Calculate the mass of NaCl to prepare the solution
58.5 g ----------------- 1mol
x ----------------- 2 moles
x = (2 x 58.5) / 1
x = 117g
4.- Weight 117 g of NaCl, place them in a volumetric flask (1 l), and add enough water to prepare the solution.