Gases take the shape of their container. When you have a large container, the spaces between molecules (particles) can be further apart than if they were close together. In small containers, the particles are forced to be closer together, or compressed.
Think of it like a pep rally in a gym v.s. a classroom. In the gym, everyone has a bit of wiggle room. With the same number of people in a classroom, everyone would need to be packed in there. This can also explain why a smaller pot over boils from steam before a larger one does, even if the amount of water is the same.
Answer:
B. electrons possess the largest charge-to-mass ratio among the subatomic particles listed in the four choices.
Explanation:
Consider the mass of each particle. Express the masses in atomic mass units:
- Protons: approximately 1.007 amu each;
- Neutrons: approximately 1.009 amu each;
- Electrons: approximately 0.0005 amu each.
Similarly, consider the charge on each particle. Express the charges in multiples of the fundamental charge:
- Protons: +1 e;
- Neutrons: 0;
- Electrons: -1 e.
Calculate the charge-to-mass ratio for the three species:
- Protons: approximately
; - Neutrons: 0;
- Electrons: approximately
.
Almost all nuclei contain protons and neutrons. The only exception is the hydrogen-1 nucleus, which contains only one proton and no neutron. The mass of the nucleus is approximately the same as the sum of its components' masses. The extra neutron will only add to the mass of the nucleus (the denominator) without contributing to the charge (the numerator.) As a result, the charge-to-mass ratio of nuclei will be positive but no greater than the charge-to-mass ratio of protons.
Among the particles in the four choices, the charge-to-mass ratio is the greatest for electrons.
Answer: The given statement is true.
Explanation:
When we increase the amount of solvent which is water in this case then it means there will occur an increase in the molecules. Hence, there will be more number of collisions to take place with increase in number of molecules.
Therefore, more is the amount of interaction taking place between the molecules of a solution more will be its rate of hydrolysis.
Thus, we can conclude that the statement increasing the amount of water in which the sugar is dissolved will increase the frequency of collisions between the sucrose molecules and the water molecules resulting in an increase in the rate of hydrolysis, is true.
Answer:
ΔH0reaction = [ΔHf0 CO2(g)] - [ΔHf0 CO(g) + ΔHf0 O2(g)]
Explanation:
Chemical equation:
CO + O₂ → CO₂
Balanced chemical equation:
2CO + O₂ → 2CO₂
The standard enthalpy for the formation of CO = -110.5 kj/mol
The standard enthalpy for the formation of O₂ = 0 kj/mol
The standard enthalpy for the formation of CO₂ = -393.5 kj/mol
Now we will put the values in equation:
ΔH0reaction = [ΔHf0 CO2(g)] - [ΔHf0 CO(g) + ΔHf0 O2(g)]
ΔH0reaction = [-393.5 kj/mol] - [-110.5 kj/mol + 0]
ΔH0reaction = [-393.5 kj/mol] - [-110.5 kj/mol]
ΔH0reaction = -283 kj/mol