Answer:
A. increasing the positive charge of the positively charged object and increasing the negative charge of the negatively charged object
Explanation:
Turn lights off, unplug electronics, and use solar energy
Answer:
The potential energy (P.E) at the top is 392 J
The kinetic energy (K.E) at the top is 0 J
The potential energy (P.E) at the halfway point is 196 J.
The kinetic energy (K.E) at the halfway point is 196 J.
Explanation:
Given;
mass of the rock, m = 2 kg
height of the cliff, h = 20 m
speed of the rock at the halfway point, v = 14 m/s
The potential energy (P.E) and kinetic energy (K.E) when its at the top;
P.E = mgh
P.E = (2)(9.8)(20)
P.E= 392 J
K.E = ¹/₂mv²
where;
v is velocity of the rock at the top of the cliff = 0
K.E = ¹/₂(2)(0)²
K.E = 0
The potential energy (P.E) and kinetic energy (K.E) at the halfway point;
P.E = mg(¹/₂h)
P.E = (2)(9.8)(¹/₂ x 20)
P.E = 196 J
K.E = ¹/₂mv²
where;
v is velocity of the rock at the halfway point = 14 m/s
K.E = ¹/₂(2)(14)²
K.E = 196 J.
Answer:
The correct option is (B).
Explanation:
The Kepler's third law of motion gives the relationship between the orbital time period and the distance from the semi major axis such that,

It is mentioned that, an asteroid with an orbital period of 8 years. So,

So, an asteroid with an orbital period of 8 years lies at an average distance from the Sun equal to 4 astronomical units.