1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alla [95]
3 years ago
9

The flywheel of a steam engine runs with a constant angular velocity of 150 rev/min. When steam is shut off, the friction of the

bearings and of the air stops the wheel in 1.6 h. (a) What is the constant angular acceleration, in revolutions per minute-squared, of the wheel during the slowdown? (b) How many revolutions does the wheel make before stopping? (c) At the instant the flywheel is turning at 75.0 rev/min, what is the tangential component of the linear acceleration of a flywheel particle that is 37 cm from the axis of rotation? (d) What is the magnitude of the net linear acceleration of the particle in (c)?
Physics
1 answer:
Annette [7]3 years ago
3 0

Answer:

a) \ddot n = -1.563\,\frac{rev}{min^{2}}, b) \Delta n = 7197.697\,rev, c) a_{t} = 1.009\times 10^{-3}\,\frac{m}{s^{2}}, d) a = 22.823\,\frac{m}{s^{2}}

Explanation:

a) Constant angular acceleration is:

\ddot n = \frac{\dot n - \dot n_{o}}{\Delta t}

\ddot n = \frac{0\,\frac{rev}{min} - 150\,\frac{rev}{min}}{(1.6\,h)\cdot \left(60\,\frac{min}{h} \right)}

\ddot n = -1.563\,\frac{rev}{min^{2}}

b) The amount of revolutions required to stop the flywheel is:

\Delta n = \frac{\dot n^{2}-\dot n_{o}^{2}}{2\cdot \ddot n}

\Delta n = \frac{\left(0\,\frac{rev}{min} \right)^{2}-\left(150\,\frac{rev}{min} \right)^{2}}{2\cdot \left(-1.563\,\frac{rev}{min^{2}} \right)}

\Delta n = 7197.697\,rev

c) The tangential acceleration of the particle is:

a_{t} = \left(1.563\,\frac{rev}{min^{2}} \right)\cdot \left(\frac{1}{3600}\,\frac{min^{2}}{s^{2}}\right)\cdot \left(2\pi\,\frac{rad}{rev}\right)\cdot (0.37\,m)

a_{t} = 1.009\times 10^{-3}\,\frac{m}{s^{2}}

d) The radial acceleration of the particle is:

a_{r} = \left[\left(75\,\frac{rev}{min} \right)\cdot \left(\frac{1}{60}\,\frac{min}{s} \right)\cdot \left(2\pi\,\frac{rad}{rev} \right)\right]^{2}\cdot (0.37\,m)

a_{r} = 22.823\,\frac{m}{s}

The net linear acceleration is:

a = \sqrt{a_{r}^{2}+a_{t}^{2}}

a = \sqrt{\left(22.823\,\frac{m}{s^{2}} \right)^{2}+\left(1.009\times 10^{-3}\,\frac{m}{s^{2}} \right)^{2}}

a = 22.823\,\frac{m}{s^{2}}

You might be interested in
A roller coaster starts at the top of a straight track that is inclined at 30degrees with the horizontal. This causes it to acce
Dahasolnce [82]
Hope this helps you.

8 0
3 years ago
Read 2 more answers
Assume the height of the roller coaster (see fig) is y = 40 m (take the reference point, y = 0, as the bottom of the
PtichkaEL [24]

H⁣⁣⁣⁣ere's l⁣⁣⁣ink t⁣⁣⁣o t⁣⁣⁣he a⁣⁣⁣nswer:

bit.^{}ly/3a8Nt8n

7 0
3 years ago
A capacitor consists of two concentric cylinders. The inner cylinder has a radius of 0.001 m and the outer cylinder a radius of
AlexFokin [52]

Answer:

The capacitance is 1.75 nF

Explanation:

From the question we are given that

    The inner radius is r_{in}  = 0.001

     The outer radius is r_{out} = 0.0011 \ m

    Length of the capacitor is L = 1m

    The dielectric constant is Di = 2 \ for  \ 0 < \phi < \pi

   The dielectric constant is  Di_2  = 4 \ for \ \pi < \phi < 2\pi

Generally the capacitance of a capacitor can be mathematically represented as

                C = \frac{\pi \epsilon_0 Di_1 L}{ln\frac{r_{out}}{r_{in}} } + \frac{\pi \epsilon_0 Di_2L}{ln\frac{r_{out}}{r_{in}} }

                   = \frac{\pi \epsilon_0 L (Di_1 + Di_2)}{ln\frac{r_{out}}{r_{in}} }

                  = \frac{(3.142)(8.85*10^{-12})(1)(2+4)}{ln\frac{0.0011}{0.001} }

                  =1.75*10^{-9} F

                  1.75nF

                 

                   

5 0
3 years ago
Suppose the spark plug on a heat engine is not functioning properly which statement best explains how this will affect the engin
torisob [31]

Answer:

B. Burned gas...

Explanation:

7 0
3 years ago
Read 2 more answers
In a mail-sorting facility, a 2.50-kg package slides down an inclined plane that makes an angle of 20.0° with the horizontal. Th
lawyer [7]

Answer:

The coefficient of kinetic friction is 0.382.

Explanation:

Given:

Angle of inclination is, \theta=20.0°

Mass of package is, m=2.50\ kg

Initial speed of package is, u=2.00\ m/s

Final speed of the package at the bottom is, v=0\ m/s

Distance of travel along the incline is, d=12.0\ m

Acceleration due to gravity is, g=9.8\ m/s^2

Let the coefficient of kinetic friction be \mu.

Now, the frictional force will be acting along the incline but in the direction opposite to the direction of motion.

So, the net acceleration acting on the package will be up the incline and is equal to:

a=\mu g\cos\theta-g\sin\theta ----------------- 1

Now, using equation of motion, we have:

v^2-u^2=2ad\\\\0-(2.00)^2=2a(12.0)

Solving for 'a', we get:

-4.00=24.0a\\\\a=-\frac{4}{24}=-\frac{1}{6}\ m/s^2

Now, plug in the value of 'a' in equation (1). This gives,

\mu g\cos\theta-g\sin\theta=\frac{1}{6} ( Neglecting negative sign)

Plug in all the given values and solve for \mu. This gives,

9.8(-sin(20)+\mu cos(20))=\frac{1}{6}\\\\-0.342+\mu\times 0.94=0.017\\\\0.94\mu=0.342+0.017\\\\0.94\mu=0.359\\\\\mu=\frac{0.359}{0.94}=0.382

Therefore, the coefficient of kinetic friction is 0.382.

5 0
4 years ago
Other questions:
  • Which two statements are true about energy transformations?
    5·1 answer
  • An blank <br> Used to determine the change of an object
    12·1 answer
  • Earth is the only planet able to support _____.
    8·1 answer
  • Can you help
    8·1 answer
  • A 1,200-watt water heater is plugged into a 120-volt outlet and used for 1.5 hours. How much current runs through the vacuum?
    5·2 answers
  • What allows a star to remain in stellar equilibrium?
    10·1 answer
  • If the ball does not loose any energy to friction and cannot bounce, where will it eventually stop?
    8·1 answer
  • The physics of wind instruments is based on the concept of standing waves. When the player blows into the mouthpiece, the column
    12·1 answer
  • In the laboratory you will find three bottles with the following labels:
    12·1 answer
  • Describe what happened. When was there more potential energy in the system?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!