Answer: a) 11.76 m/s b) 7.056 m
Explanation:
The described situation is as follows:
An object is dropped from the top of a tower and when measuring the time it takes to reach the ground that turns out to be 0.02 minutes.
This situation is related to free fall, this also means we have constant acceleration, hence the equations we will use are:
(1)
(2)
Where:
Is the final velocity of the object
Is the initial velocity of the object (it was dropped)
is the acceleration due gravity
is the height of the tower
is the time it takes to the object to reach the ground
b) Begining with (1):
(3)
(4)
(5) This is the final velocity of the object
a) Substituting (5) in (2):
(6)
Clearing
:
(7)
(8) This is the height of the tower
The cost of developing thermonuclear power with plasmabe defended because D. It can provide an inexpensive power source.
<h3>How did the
cost of developing t
hermonuclear power defended?</h3>
The cost of developing thermonuclear power defended becvause we can see in the paragraph how it was told that the generation of ths power can be donee through the understanding of the occurrence of plasmain nature,
It should be noted that this thermonuclear power with plasmabe posses the characteristics which make it to exist in the ionosphere, and it can be felt in the flames as well; as in the chemical and nuclearexplosions.
In conclusion the power can be seen as an inexpensive source power because the p[roduction of this power cn be found in most of the thing that can be found around us as discused above.
Therefore, option D is correct.
Read more about cost at:
brainly.com/question/25109150
#SPJ1
Answer:
the box has vertical force on the table
Explanation:
There can be no single isolated force, for every action there must be a force of reaction of ingual magnitude and direction, but in the opposite direction
Answer:
2.01
Explanation:
First, we need to find the centripetal acceleration.
We're given that the merry go round rotates 1 revolution in 2.09 seconds. Converting to rpm, we know that it rotates 30 revolution per minute
Now this speed gotten in rpm will be converted to m/s, to ease the calculation
30 rpm = πdN/60 m/s
30 rpm = (3.142 * 4 * 30)/60
30 rpm = 377.04/60
30 rpm = 6.284 m/s
a(c) = v²/r
a(c) = 6.284²/2
a(c) = 39.49 / 2
a(c) = 19.74 m/s²
F = ma
F = 50 * 19.74
F = 987 N
Also, Normal Force, F(n) =
F(n) = mg
F(n) = 50 * 9.81
F(n) = 490.5
We then use this to find the coefficient of static friction, μ
μ = F/F(n)
μ = 987 / 490.5
μ = 2.01