1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oxana [17]
3 years ago
12

A 70 kg man is walking at a speed of 2 m/s. What is his Kinetic Energy?

Physics
2 answers:
Ilya [14]3 years ago
8 0

Kinetic energy = 1/2 (mass) (speed squared)

KE = 1/2 (70kg) (2m/s)^2

KE = (35 kg) (4 m^2/s^2)

KE = (140) kg-m^2/s^2

That's 140 Newton-meter

or

140 Joules

den301095 [7]3 years ago
5 0
140 Jules. Is the correct answer
You might be interested in
The potential energy of a particle as a function of position will be given as U(x) = A x2 + B x + C, where U will be in joules w
satela [25.4K]

Answer:

F = - 2 A x - B

Explanation:

The force and potential energy are related by the expression

      F = - dU / dx i ^ -dU / dy j ^ - dU / dz k ^

Where i ^, j ^, k ^ are the unit vectors on the x and z axis

The potential they give us is

     U (x) = A x² + B x + C

Let's calculate the derivatives

    dU / dx = A 2x + B + 0

The other derivatives are zero because the potential does not depend on these variables.

Let's calculate the strength

      F = - 2 A x - B

3 0
3 years ago
A bird flies 10 miles south, turns and flies 15 miles east. What distance did it fly.
vfiekz [6]

Answer:

wouldn't it be 25 miles?? yeah

Explanation:

4 0
2 years ago
Why were the rings of Uranus not observed directly from telescopes on the ground on Earth? How were they discovered?
leonid [27]

Answer:Explained below.

Explanation:

Uranus rings is made up of jet black, coal-like particles in small bands, making them difficult  to perceive from Earth.This indicates that they are probably composed of a mixture of the ice and a dark material. The nature of  material is dismal, but it might be some organic compounds greatly darkened by the charged particle irradiation from the Uranian magnetosphere. Rings were discovered by using a infrared telescope throughout  the occultation of a star as Uranus passed in front of it. The light from the star dimmed many times before it was obstructed by the disk of Uranus and subsequently, showing the presence of various distinct rings.

6 0
3 years ago
Q 2 Two mirrors meet at right angles. A ray of light is incident on one at an angle of 30°
serg [7]

a ray of light is incident towards a plane mirror at an angles of 30degrees with the mirror surface. what will be the angles of reflection is 60degree.

3 0
3 years ago
A puck of mass 0.110 kg slides across ice in the positive x-direction with a kinetic friction coefficient between the ice and pu
lara [203]

Answer:

a) Ffr = -0.18 N

b) a= -1.64 m/s2

c) t = 9.2 s

d) x = 68.7 m.

e) W= -12.4 J

f) Pavg = -1.35 W

g) Pinst = -0.72 W

Explanation:

a)

  • While the puck slides across ice, the only force acting in the horizontal direction, is the force of kinetic friction.
  • This force is the horizontal component of the contact force, and opposes to the relative movement between the puck and the ice surface, causing it to slow down until it finally comes to a complete stop.
  • So, this force can be written as follows, indicating with the (-) that opposes to the movement of the object.

       F_{frk} = -\mu_{k} * F_{n} (1)

       where μk is the kinetic friction coefficient, and Fn is the normal force.

  • Since the puck is not accelerated in the vertical direction, and there are only two forces acting on it vertically (the normal force Fn, upward, and  the weight Fg, downward), we conclude that both must be equal and opposite each other:

      F_{n} = F_{g} = m*g (2)

  • We can replace (2) in (1), and substituting μk by its value, to find the value of the kinetic friction force, as follows:

       F_{frk} = -\mu_{k} * F_{n} = -0.167*9.8m/s2*0.11kg = -0.18 N (3)

b)

  • According Newton's 2nd Law, the net force acting on the object is equal to its mass times the acceleration.
  • In this case, this net force is the friction force which we have already found in a).
  • Since mass is an scalar, the acceleration must have the same direction as the force, i.e., points to the left.
  • We can write the expression for a as follows:

        a= \frac{F_{frk}}{m} = \frac{-0.18N}{0.11kg} = -1.64 m/s2  (4)

c)

  • Applying the definition of acceleration, choosing t₀ =0, and that the puck comes to rest, so vf=0, we can write the following equation:

        a = \frac{-v_{o} }{t} (5)

  • Replacing by the values of v₀ = 15 m/s, and a = -1.64 m/s2, we can solve for t, as follows:

       t =\frac{-15m/s}{-1.64m/s2} = 9.2 s (6)

d)

  • From (1), (2), and (3) we can conclude that the friction force is constant, which it means that the acceleration is constant too.
  • So, we can use the following kinematic equation in order to find the displacement before coming to rest:

        v_{f} ^{2} - v_{o} ^{2} = 2*a*\Delta x  (7)

  • Since the puck comes to a stop, vf =0.
  • Replacing in (7) the values of v₀ = 15 m/s, and a= -1.64 m/s2, we can solve for the displacement Δx, as follows:

       \Delta x  = \frac{-v_{o}^{2}}{2*a} =\frac{-(15.0m/s)^{2}}{2*(-1.64m/s2} = 68.7 m  (8)

e)

  • The total work done by the friction force on the object , can be obtained in several ways.
  • One of them is just applying the work-energy theorem, that says that the net work done on the object is equal to the change in the kinetic energy of the same object.
  • Since the final kinetic energy is zero (the object stops), the total work done by friction (which is the only force that does work, because the weight and the normal force are perpendicular to the displacement) can be written as follows:

W_{frk} = \Delta K = K_{f} -K_{o} = 0 -\frac{1}{2}*m*v_{o}^{2} =-0.5*0.11*(15.0m/s)^{2}   = -12.4 J  (9)

f)

  • By definition, the average power is the rate of change of the energy delivered to an object (in J) with respect to time.
  • P_{Avg} = \frac{\Delta E}{\Delta t}  (10)
  • If we choose t₀=0, replacing (9) as ΔE, and (6) as Δt, and we can write the following equation:

       P_{Avg} = \frac{\Delta E}{\Delta t} = \frac{-12.4J}{9.2s} = -1.35 W (11)

g)

  • The instantaneous power can be deducted from (10) as W= F*Δx, so we can write P= F*(Δx/Δt) = F*v (dot product)
  • Since F is constant, the instantaneous power when v=4.0 m/s, can be written as follows:

       P_{inst} =- 0.18 N * 4.0m/s = -0.72 W (12)

7 0
3 years ago
Other questions:
  • Friction in a car's engine produces some wasted _____ energy.
    14·2 answers
  • A police car is at rest parallel to the highway and measures the speed of cars. It sends the signal with a frequency of 1200 Hz,
    15·1 answer
  • Jenna is learning how to ice skate. She wants her mother to pull her along so that she has an acceleration of 0.76 m/s2. If Jenn
    13·1 answer
  • You are to create a story for a child of 5-6 years old. You will explain the brain and its functions to them. You need to use th
    13·1 answer
  • What is atmospheric pressure and what are the diffetent units?
    15·1 answer
  • 1. A fixed pulley is a machine that increases the effort force.
    13·1 answer
  • 46 points :)
    9·2 answers
  • A student has a sample of an insoluble solid and a liquid. The task is to separate the mixture into its pure components. What qu
    8·1 answer
  • Anybody wana play imvu or 2k
    13·2 answers
  • C.<br>Difference between<br>D) solar energy and fossil fuel energy​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!