1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bogdan [553]
3 years ago
14

Calculate the net force and the acceleration on the block

Physics
1 answer:
Darina [25.2K]3 years ago
7 0

Answer:

Net Force = 10N

Acceleration = 2m/s^2

Explanation:

calculate the net force and the acceleration on the block

Net force on the block F = mass * acceleration

Net force acting in the positive direction = 4N + 6N = 10N

Mass = 5kg

According to newton's second law;

a = F/m

a = 10N/5

a = 2m/s^2

hence the acceleration on the block is 2m/s^2

You might be interested in
Real-world examples of power
Paha777 [63]
By definition, power is the amount of energy consumed (or produced) in a second. (or more precisely, it is the rate of change in energy).
so anything which uses energy in a known time period can be labeled with a power rating.

an example for power could be a nuclear plant; traditional nuclear plants produce somewhat close to 1 giga watts (which means 1 giga joules in a second)


3 0
3 years ago
With the simplified model of the eye, what corrective lens (specified by focal length as measured in air) would be needed to ena
Ymorist [56]

Answer:

Please see the attached picture for the complete answer.

Explanation:

6 0
3 years ago
Usain Bolt's world-record 100 m sprint on August 16, 2009, has been analyzed in detail. At the start of the race, the 94.0 kg Bo
ZanzabumX [31]

a) 893 N

b) 8.5 m/s

c) 3816 W

d) 69780 J

e) 8030 W

Explanation:

a)

The net force acting on Bolt during the acceleration phase can be written using Newton's second law of motion:

F_{net}=ma

where

m is Bolt's mass

a is the acceleration

In the first 0.890 s of motion, we have

m = 94.0 kg (Bolt's mass)

a=9.50 m/s^2 (acceleration)

So, the net force is

F_{net}=(94.0)(9.50)=893 N

And according to Newton's third law of motion, this force is equivalent to the force exerted by Bolt on the ground (because they form an action-reaction pair).

b)

Since Bolt's motion is a uniformly accelerated motion, we can find his final speed by using the following suvat equation:

v=u+at

where

v is the  final speed

u is the initial speed

a is the acceleration

t is the time

In the first phase of Bolt's race we have:

u = 0 m/s (he starts from rest)

a=9.50 m/s^2 (acceleration)

t = 0.890 s (duration of the first phase)

Solving for v,

v=0+(9.50)(0.890)=8.5 m/s

c)

First of all, we can calculate the work done by Bolt to accelerate to a speed of

v = 8.5 m/s

According to the work-energy theorem, the work done is equal to the change in kinetic energy, so

W=K_f - K_i = \frac{1}{2}mv^2-0

where

m = 94.0 kg is Bolt's mass

v = 8.5 m/s is Bolt's final speed after the first phase

K_i = 0 J is the initial kinetic energy

So the work done is

W=\frac{1}{2}(94.0)(8.5)^2=3396 J

The power expended is given by

P=\frac{W}{t}

where

t = 0.890 s is the time elapsed

Substituting,

P=\frac{3396}{0.890}=3816 W

d)

First of all, we need to find what is the average force exerted by Bolt during the remaining 8.69 s of motion.

In the first 0.890 s, the force exerted was

F_1=893 N

We know that the average force for the whole race is

F_{avg}=820 N

Which can be rewritten as

F_{avg}=\frac{0.890 F_1 + 8.69 F_2}{0.890+8.69}

And solving for F_2, we find the average force exerted by Bolt on the ground during the second phase:

F_{avg}=\frac{0.890 F_1 + 8.69 F_2}{0.890+8.69}\\F_2=\frac{(0.890+8.69)F_{avg}-0.890F_1}{8.69}=812.5 N

The net force exerted by Bolt during the second phase can be written as

F_{net}=F_2-D (1)

where D is the air drag.

The net force can also be rewritten as

F_{net}=ma

where

a=\frac{v-u}{t} is the acceleration in the second phase, with

u = 8.5 m/s is the initial speed

v = 12.4 m/s is the final speed

t = 8.69 t is the time elapsed

Substituting,

a=\frac{12.4-8.5}{8.69}=0.45 m/s^2

So we can now find the average drag force from (1):

D=F_2-F_{net}=F_2-ma=812.5 - (94.0)(0.45)=770.2 N

So the increase in Bolt's internal energy is just equal to the work done by the drag force, so:

\Delta E=W=Ds

where

d is Bolt's displacement in the second part, which can be found by using suvat equation:

s=\frac{v^2-u^2}{2a}=\frac{12.4^2-8.5^2}{2(0.45)}=90.6 m

And so,

\Delta E=Ds=(770.2)(90.6)=69780 J

e)

The power that Bolt must expend just to voercome the drag force is given by

P=\frac{\Delta E}{t}

where

\Delta E is the increase in internal energy due to the air drag

t is the time elapsed

Here we have:

\Delta E=69780 J

t = 8.69 s is the time elapsed

Substituting,

P=\frac{69780}{8.69}=8030 W

And we see that it is about twice larger than the power calculated in part c.

3 0
3 years ago
What does the law of conservation of matter state
r-ruslan [8.4K]

Answer:

Matter can be changed, but not created or destroyed.

Explanation:

Matter can change for through physical and chemical changes, though this happens, matter is conserved. The same amount of matter exists before and after the change.

3 0
2 years ago
What makes a ship float​
stellarik [79]

Answer:

Ships can float because a ship is less dense than that of the water that it floats on.

Explanation:

Hope this helps!

7 0
3 years ago
Other questions:
  • Why are the decomposers categorized as consumers? how do they differ from producers
    11·2 answers
  • PLZ HELP 30 PNTS AND BRAINLIST IF CORRECT! (accidentally put 10 pnts, i get u the points if u get the answer right)
    8·2 answers
  • Which condition describes an object having terminal velocity?
    8·2 answers
  • A student performs an experiment and must measure the lengths of four different objects: a textbook, a pencil, a cup, and a piec
    7·2 answers
  • EXPLAIN HOW ENERGY IS TRANSMITTED THROUGH A MEDIUM
    5·2 answers
  • A 1.8 kg book had been dropped from the top of the football stadium. It's speed is 4.8 m/s when it is 2.9 meters above the groun
    8·1 answer
  • What is deceleration?????<br><br>Have a nice day​
    10·2 answers
  • How many meters are there in 666 miles? (1 mi = 1609 m)
    14·1 answer
  • Will the velocity of the book change as it moves across the surface with NO friction? Explain your answer.
    10·2 answers
  • . You are in an airplane flying over the ocean. How could you most accurately determine your distance from the water?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!