Answer:
a) that laser 1 has the first interference closer to the central maximum
c) Δy = 0.64 m
Explanation:
The interference phenomenon is described by the expression
d sin θ = m λ
Where d is the separation of the slits, λ the wavelength and m an integer that indicates the order of interference
For the separation of the lines we use trigonometry
tan θ = sin θ / cos θ = y / x
In interference experiments the angle is very small
tan θ = sin θ = y / x
d y / x = m λ
a) and b) We apply the equation to the first laser
λ = d / 20
d y / x = m d / 20
y = m x / 20
y = 1 4.80 / 20
y = 0.24 m
The second laser
λ = d / 15
d y / x = m d / 15
y = m x / 15
y = 0.32 m
We can see that laser 1 has the first interference closer to the central maximum
c) laser 1
They ask us for the second maximum m = 2
y₂ = 2 4.8 / 20
y₂ = 0.48 m
For laser 2 they ask us for the third minimum m = 3
In this case to have a minimum we must add half wavelength
y₃ = (m + ½) x / 15
m = 3
y₃ = (3 + ½) 4.8 / 15
y₃ = 1.12 m
Δy = 1.12 - 0.48
Δy = 0.64 m
Answer:
before this type of attack, high acceleration is the most important thing.
Explanation:
As the zebra is ambushed by the crocodile the most important thing is a quick reaction, in this attack the most likely is that the crocodile is in the water so it cannot run after the zebra.
Consequently, before this type of attack, high acceleration is the most important thing.
Answer:
To lift an object, you must pull upward on the object with a force greater than the object’s weight.
The fastest speed before the string breaks is 9.5 m/s
Explanation:
The motion of the block is a uniform circular motion, which is a circular motion with constant speed. The force that keeps the block in circular motion is called centripetal force; its direction is towards the centre of the circle and its magnitude is given by:

where
m is the mass of the block
v is its speed
r is the radius of the circle
In this problem, the centripetal force is provided by the tension in the string, T, so we can write:

The string breaks when the centripetal force becomes larger than the maximum tension in the string:

Re-arranging the equation for v,

and here we have:
T = 450 N
m = 10 kg
r = 2 m
Substituting,

So, the fastest speed before the string breaks is 9.5 m/s.
Learn more about circular motion:
brainly.com/question/2562955
brainly.com/question/6372960
#LearnwithBrainly
Answer:
speed of light in glass ≈ 1.89*
Explanation:
refractive index (n) =
.......................equation 1
refractive index (n) = velocity of light in air/ velocity of light in medium ....equ2
equate equation 1 and two;

speed of light in glass = c*sinC
=
°
speed of light in glass = 188,796,117.314 m/s
speed of light in glass ≈ 1.89*