Question:<em> </em><em>Find, separately, them mass of the balloon and the basket (incidentally, most of the balloon's mass is air)</em>
Answer:
The mass of the balloon is 2295 kg, and the mass of the basket is 301 kg.
Explanation:
Let us call the mass of the balloon
and the mass of the basket
, then according to newton's second law:
,
where
is the upward acceleration, and
is the net propelling force (counts the gravitational force).
Also, the tension
in the rope is 79.8 N more than the basket's weight; therefore,

and this tension must equal


Combining equations (2) and (3) we get:

since
, we have

Putting this into equation (1) and substituting the numerical values of
and
, we get:


Thus, the mass of the balloon and the basket is 2295 kg and 301 kg respectively.
Kinetic energy is the energy possessed by an object when that object is moving in space. The higher the mass of an object or higher the speed of an object the higher the kinetic energy will be.
So to calculate the Kinetic Energy we can use the following formula
K.E=(1/2)*m*v^2
Inserting the values in formula gives:
K.E=1/2*7.26*2^2
14.52J
This is the final answer which gives the kinetic energy of the ball.
Mercury a terrestrial. It isn't made of gas.
Answer:
W = 1418.9 J = 1.418 KJ
Explanation:
In order to find the work done by the pull force applied by Karla, we need to can use the formula of work done. This formula tells us that work done on a body is the product of the distance covered by the object with the component of force applied in the direction of that displacement:
W = F.d
W = Fd Cosθ
where,
W = Work Done = ?
F = Force = 151 N
d = distance covered = 10 m
θ = Angle with horizontal = 20°
Therefore,
W = (151 N)(10 m) Cos 20°
<u>W = 1418.9 J = 1.418 KJ</u>