To answer that question, we don't care what the highest and lowest
levels of the wave are, or how far apart they are. We only need to be
able to identify the highest point on the wave, and keep track of how
often those pass by us.
You said it takes 4 seconds for a complete wave to pass by.
Through the sheer power of intellect, I'm able to take that information
and calculate that 1/4 of the wave passes by in 1 second.
There's your frequency . . . 1/4 per second, or 0.25 Hz.
Answer:
<em> The object has frequency of 2 Hz and time period of 0.5 s.</em>
Explanation:
<em>Frequency</em> is defined as number of oscillation per second ie back and forth swings done in single second.
Here it is given that the object oscillates 20 times in 10 seconds.
So f =
= 2Hz
The <em>time period</em> is defined as time taken by the object to complete one full oscillation.
T = 
T=
=0.5 s
<em>Thus the object has frequency of 2 Hz and time period of 0.5 s.</em>
Answer:
<em><u>5</u></em><em><u>0</u></em><em><u>.</u></em><em><u>6</u></em><em><u>3</u></em><em><u> </u></em><em><u>f</u></em><em><u>t</u></em><em><u>/</u></em><em><u>s</u></em><em><u> </u></em><em><u>(</u></em><em><u>2</u></em><em><u>d</u></em><em><u>p</u></em><em><u>)</u></em>
Explanation:
Speed = Distance/Time
80/1.58 = 50.63291139
= <u>50.63</u><u> </u><u>f</u><u>t</u><u>/</u><u>s</u> (2dp)
It's the second graph!
it's the only one with a negative gradient.
so the temperature of the ball will fall in water as it looses its heat.
activate windows,:-P
Answer:
m = 0.51[kg]
Explanation:
Potential energy is defined as the product of mass by gravity by height.

where:
Epot = potential energy = 15 [J]
m = mass [kg]
g = gravity acceleration = 9.8 [m/s²]
h = elevation = 3 [m]
Now replacing:
![E_{pot}=m*g*h\\15=m*9.8*3\\m = 0.51[kg]](https://tex.z-dn.net/?f=E_%7Bpot%7D%3Dm%2Ag%2Ah%5C%5C15%3Dm%2A9.8%2A3%5C%5Cm%20%3D%200.51%5Bkg%5D)