Answer:
"Magnitude of a vector can be zero only if all components of a vector are zero."
Explanation:
"The magnitude of a vector can be smaller than length of one of its components."
Wrong, the magnitude of a vector is at least equal to the length of a component. This is because of the Pythagoras theorem. It can never be smaller.
"Magnitude of a vector is positive if it is directed in +x and negative if is is directed in -X direction."
False. Magnitude of a vector is always positive.
"Magnitude of a vector can be zero if only one of components is zero."
Wrong. For the magnitude of a vector to be zero, all components must be zero.
"If vector A has bigger component along x direction than vector B, it immediately means, the vector A has bigger magnitude than vector B."
Wrong. The magnitude of a vector depends on all components, not only the X component.
"Magnitude of a vector can be zero only if all components of a vector are zero."
True.
The number of protons an element has is its atomic number so the atomic number would be 29
Answer:
the answer is 2000Nm
Explanation:
wprk done = force × distance moved
w.d = 200N × 10m
w.d = 2000Nm
mark me as brainliest plyyzzz
Answer:
the final temperature of the tea is 7.39⁰C.
Explanation:
Given;
mass of the tea, m = 375 g
specific heat capacity of the tea, C = 4.184 JJ/g°C
initial temperature of the tea, t₁ = 95°C
the final temperature of the tea, t₂ = ?
Energy lost by the refrigerator, Q = 137,460 J
The energy lost by the refrigerator is given by the following formula;
-Q = mc(t₂ - t₁)
-137,460 =375 x 4.184(t₂ - 95°C)
-137,460 = 1569(t₂ - 95°C)

Therefore, the final temperature of the tea is 7.39⁰C.
The density of an object can be calculated using the formula Density = Mass/Volume. In this case however we are searching for the volume and must rearrange the formula so that we are solving for the volume. If you multiply both sides by volume and then divide both sides by mass you end up with the equation Volume = Mass/Density.
Volume = 1500g/1.5g/cm^3
Volume = 1000 cm^3