1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ladessa [460]
3 years ago
5

A hammer slides down a roof that makes a 30.0°angle with the horizontal. What are the magnitudes of the components of the hammer

's velocity at the edge of the roof if it is moving at a speed of 8.25 m/s
Physics
1 answer:
dlinn [17]3 years ago
7 0
<h2>Answer:7.14ms^{-1},4.125ms^{-1}</h2>

Explanation:

Whenever an object is moving in a 2D frame,its motion can be analysed as if it is travelling in two independent 1D frames.

One of such independent 1D frames are along horizontal and another along vertical.

Let v be the total velocity.

Given that,v=8.25ms^{-1}

We call the horizontal velocity as v_{h} and the vertical velocity as v_{v}.

v_{h}=vCos\alpha

v_{v}=vSin\alpha

where \alpha is the angle between the object and horizontal.

It is given that \alpha =30^{0}

v_{h}=8.25\times Cos(30^{0})=7.14ms^{-1}

v_{v}=8.25\times Sin(30^{0})=4.125ms^{-1}

You might be interested in
A bolt of lightning discharges 9.7 C in 8.9 x 10^-5 s. What is the average current during the discharge?
Anastaziya [24]

Answer: 1.089\times 10^5\ A

Explanation:

Given

Charge discharged Q=9.7\C

time taken t=8.9\times 10^{-5}\ s

Current is given as rate of change of discharge i.e.

\Rightarrow I=\dfrac{Q}{t}\\\\\Rightarrow I=\dfrac{9.7}{8.9\times 10^{-5}}\\\\\Rightarrow I=1.089\times 10^5\ A

Therefore, the average current is 1.089\times 10^5\ A

3 0
2 years ago
A miniature quadcopter is located at x = -2.25 m and y, - 5.70 matt - 0 and moves with an average velocity having components Vv,
kupik [55]

Recall that average velocity is equal to change in position over a given time interval,

\vec v_{\rm ave} = \dfrac{\Delta \vec r}{\Delta t}

so that the <em>x</em>-component of \vec v_{\rm ave} is

\dfrac{x_2 - (-2.25\,\mathrm m)}{1.60\,\mathrm s} = 2.70\dfrac{\rm m}{\rm s}

and its <em>y</em>-component is

\dfrac{y_2 - 5.70\,\mathrm m}{1.60\,\mathrm s} = -2.50\dfrac{\rm m}{\rm s}

Solve for x_2 and y_2, which are the <em>x</em>- and <em>y</em>-components of the copter's position vector after <em>t</em> = 1.60 s.

x_2 = -2.25\,\mathrm m + \left(2.70\dfrac{\rm m}{\rm s}\right)(1.60\,\mathrm s) \implies \boxed{x_2 = 2.07\,\mathrm m}

y_2 = 5.70\,\mathrm m + \left(-2.50\dfrac{\rm m}{\rm s}\right)(1.60\,\mathrm s) \implies \boxed{y_2 = 1.70\,\mathrm m}

Note that I'm reading the given details as

x_1 = -2.25\,\mathrm m \\\\ y_1 = -5.70\,\mathrm m \\\\ v_x = 2.70\dfrac{\rm m}{\rm s}\\\\ v_y=-2.50\dfrac{\rm m}{\rm s}

so if any of these are incorrect, you should make the appropriate adjustments to the work above.

8 0
3 years ago
A satellite at a particular point along an elliptical orbit has a gravitational potential energy of 5100 MJ with respect to Eart
serious [3.7K]

To solve this problem we will apply the theorem given in the conservation of energy, by which we have that it is conserved and that in terms of potential and kinetic energy, in their initial moment they must be equal to the final potential and kinetic energy. This is,

E_{initial} = E_{final}

PE_{initial}+KE_{initial} = PE_{final}+KE_{final}

Replacing the 5100MJ for satellite as initial potential energy, 4200MJ for initial kinetic energy and 5700MJ for final potential energy we have that

KE_{final} = (PE_{initial}+KE_{initial} )-PE_{final}

KE_{final} = (5100+4200)-5700

KE_{final} = 3600MJ

Therefore the final kinetic energy is 3600MJ

5 0
3 years ago
A baseball, which has a mass of 0.685 kg., is moving with a velocity of 38.0 m/s when it contacts the baseball bat duringwhich t
Evgen [1.6K]

Answers:

a) 65.075 kgm/s

b) 10.526 s

c) 61.82 N

Explanation:

<h3>a) Impulse delivered to the ball</h3>

According to the Impulse-Momentum theorem we have the following:

I=\Delta p=p_{2}-p_{1} (1)

Where:

I is the impulse

\Delta p is the change in momentum

p_{2}=mV_{2} is the final momentum of the ball with mass m=0.685 kg and final velocity (to the right) V_{2}=57 m/s

p_{1}=mV_{1} is the initial momentum of the ball with initial velocity (to the left) V_{1}=-38 m/s

So:

I=\Delta p=mV_{2}-mV_{1} (2)

I=\Delta p=m(V_{2}-V_{1}) (3)

I=\Delta p=0.685 kg (57 m/s-(-38 m/s)) (4)

I=\Delta p=65.075 kg m/s (5)

<h3>b) Time </h3>

This time can be calculated by the following equations, taking into account the ball undergoes a maximum compression of approximately 1.0 cm=0.01 m:

V_{2}=V_{1}+at (6)

V_{2}^{2}=V_{1}^{2}+2ad (7)

Where:

a is the acceleration

d=0.01 m is the length the ball was compressed

t is the time

Finding a from (7):

a=\frac{V_{2}^{2}-V_{1}^{2}}{2d} (8)

a=\frac{(57 m/s)^{2}-(-38 m/s)^{2}}{2(0.01 m)} (9)

a=90.25 m/s^{2} (10)

Substituting (10) in (6):

57 m/s=-38 m/s+(90.25 m/s^{2})t (11)

Finding t:

t=1.052 s (12)

<h3>c) Force applied to the ball by the bat </h3>

According to Newton's second law of motion, the force F is proportional to the variation of momentum  \Delta p in time  \Delta t:

F=\frac{\Delta p}{\Delta t} (13)

F=\frac{65.075 kgm/s}{1.052 s} (14)

Finally:

F=61.82 N

6 0
3 years ago
Read 2 more answers
A person carries a plank of wood 2 m long with one hand pushing down on it at one end with a force F1 and the other hand holding
sveta [45]

Answer:

F1= 588 N

F2= 784 N

Explanation:

Please see the attached file.

5 0
3 years ago
Other questions:
  • Which feature forms at a divergent boundary
    5·2 answers
  • Look at the graph.<br><br><br><br><br><br> If the price of peaches increases, what can be expected?
    6·2 answers
  • Which group has the Same electron shells? A Titanium and Gold B Selenium and Tin C Calcium and Magnesium D Lithium and Boron
    10·1 answer
  • In science work is defined as
    7·1 answer
  • The winning time for a 500.0 mile circular race track was 3 hours and 13 minutes. What was the driver’s average speed? What was
    5·1 answer
  • Now it's your turn
    14·1 answer
  • Can sound travel through space? Why or why not?
    10·1 answer
  • QUESTION 1 Linear Motion
    5·1 answer
  • The figure in Figure 1 shows two single-slit diffraction patterns. The distance between the slit and the viewing screen is the s
    14·1 answer
  • consider the points ​p(​,​,​) and ​q(​,​,​). a. find and state your answer in two​ forms: and aibjck. b. find the magnitude of .
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!