Answer:
Explanation:
Given that,
Initial Angular velocity w=500rpm
Converting from rpm to rad/s
1rev =2πrad
1minutes =60secs
500rpm=500rev/mins
w = 500×2π/60
wi=52.36rad/s
The final angular velocity wf=0rad/s
Time to stop is t=2.6sec
We want to find angular acceleration α
Using the equation of angular motion
wf = wi + αt.
0 = 52.36 + 2.6α
-52.36=2.6α
α = -52.36/2.6
α = -20.14rad/s²
The angular acceleration is negative because it is decelerating.
Then, α=20.14rad/s²
Answer:
15.66 rad/s
Explanation:
The vertical motion and horizontal motion are independent of each other.
t = √ ( 2 s/ g) where t = time for the ball to reach the ground and s is the height of the cliff = 18.0 m
t = √ ( 36 / 9.81 ) = 1.916 secs
horizontal distance travel = ut where u is the horizontal velocity of the stone = 30 × r (radius)
tangential velocity V = angular velocity ( ω) × radius
distance traveled = ω × r × t = 30 × r
radius cancelled on both side
ω = 30 / 1.9156 = 15.66 rad/s
Answer:
All points to the left of zero are negative
Explanation:
An experimental design is used to assign variables for testing. In contrast to a control design where nothing is changed, the experimental design allows you to test various new inputs to see how they would vary from the original results.