Answer:
16613 m/s
Explanation:
Given that
mass of the fly, m = 0.55 g = 0.55*10^-3 kg
Kinetic Energy of the fly, E = 7.6*10^4 J
Speed of the fly, v = ? m/s
We know that the Kinetic Energy is that energy that an object, in this case, the fly, possesses due to its motion.
The Kinetic Energy, KE of any object is represented by the formula
KE = 1/2 * m * v²
If we substitute the values in the relation, we have,
7.6*10^4 = 1/2 * 0.55*10^-3 * v²
v² = (15.2*10^4) / 0.55*10^-3
v² = 2.76*10^8
v = √2.76*10^8
v = 16613 m/s
Thus, the fly would need a speed of 16.6 km/s in order to have a Kinetic Energy of 7.6*10^4 J
Answer:
Light passes through the gas
Light passes through the pure water
Light passes through some solids
Explanation:
In gasses, there are many spaces between the molecules. These spaces allow light to pass through them without any interruption.
In pure water, there are some spaces between particles. these particles allow some light rays to pass theough, some to move through the common boundary and reflec5 some of them.
in solids, some allow light to pass through as they are transparent or translucent
The Archimedes principle is a principle that is expressed as a law that states that a body immersed in a fluid, whether fully or partially, is subject to an upward force of the same magnitude as the weight of the fluid it displaces.
<em>Hope this helps :)</em>
Answer:
High density D answers to your questions
Answer:
= 391.67 Hz
Explanation:
The sound of lowest frequency which is produced by a vibrating sting is called its fundamental frequency (
).
The For a vibrating string, the fundamental frequency (
) can be determined by:
= 
Where v is the speed of waves of the string, and L is the length of the string.
L = 42.0 cm = 0.42 m
v = 329 m/s
= 
= 
= 391.6667 Hz
The fundamental frequency of the string is 391.67 Hz.