1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
goblinko [34]
3 years ago
13

A secret agent is locked in a room. He pushes against the door but cannot open it. Finally, he falls to the floor exhausted. Has

he done any work in the door? Why or why not?
Physics
1 answer:
Vitek1552 [10]3 years ago
8 0

Answer: There is not work done at the door because the door did not move.

Explanation:  Work is defined as the movement done by a force.

So if you move to apply a force F in an object and you move it a distance D, the work applied on the object is  

W = F*D

In this case, the secret agent pushes against the door, so there is a force, but the agent does not move the door, so D = 0, so there is no motion of the door, which implies that there is no work done at the door.

You might be interested in
Describe how the number of photoelectrons emitted from a metal plate in the photoelectric effect would change if the following o
andrew-mc [135]

Answer:

a) True. The number of photoelectrons is proportional to the amount (intensity) of the incident beam. From the expression above we see that threshold frequency cannot emit electrons.

b)   λ = c / f

Therefore, as the wavelength increases, the frequency decreases and therefore the energy of the photoelectrons emitted,

c)  threshold energy

        h f =Ф

Explanation:

It's photoelectric effect was fully explained by Einstein by the expression

       Knox = h f - fi

Where K is the kinetic energy of the photoelectrons, f the frequency of the incident radiation and fi the work function of the metal

a) True. The number of photoelectrons is proportional to the amount (intensity) of the incident beam. From the expression above we see that threshold frequency cannot emit electrons.

b) wavelength is related to frequency

         λ = c / f

Therefore, as the wavelength increases, the frequency decreases and therefore the energy of the photoelectrons emitted, so there is a wavelength from which electrons cannot be removed from the metal.

c) As the work increases, more frequency radiation is needed to remove the electrons, because there is a threshold energy

        h f =Ф

7 0
3 years ago
An 20-cm-long Bicycle Crank Arm. With A Pedal At One End. Is Attached To A 25-cm-diameter Sprocket, The Toothed Disk Around Whic
malfutka [58]

To solve the problem, it is necessary to apply the concepts related to the kinematic equations of the description of angular movement.

The angular velocity can be described as

\omega_f = \omega_0 + \alpha t

Where,

\omega_f =Final Angular Velocity

\omega_0 =Initial Angular velocity

\alpha = Angular acceleration

t = time

The relation between the tangential acceleration is given as,

a = \alpha r

where,

r = radius.

PART A ) Using our values and replacing at the previous equation we have that

\omega_f = (94rpm)(\frac{2\pi rad}{60s})= 9.8436rad/s

\omega_0 = 63rpm(\frac{2\pi rad}{60s})= 6.5973rad/s

t = 11s

Replacing the previous equation with our values we have,

\omega_f = \omega_0 + \alpha t

9.8436 = 6.5973 + \alpha (11)

\alpha = \frac{9.8436- 6.5973}{11}

\alpha = 0.295rad/s^2

The tangential velocity then would be,

a = \alpha r

a = (0.295)(0.2)

a = 0.059m/s^2

Part B) To find the displacement as a function of angular velocity and angular acceleration regardless of time, we would use the equation

\omega_f^2=\omega_0^2+2\alpha\theta

Replacing with our values and re-arrange to find \theta,

\theta = \frac{\omega_f^2-\omega_0^2}{2\alpha}

\theta = \frac{9.8436^2-6.5973^2}{2*0.295}

\theta = 90.461rad

That is equal in revolution to

\theta = 90.461rad(\frac{1rev}{2\pi rad}) = 14.397rev

The linear displacement of the system is,

x = \theta*(2\pi*r)

x = 14.397*(2\pi*\frac{0.25}{2})

x = 11.3m

5 0
3 years ago
An astronaut goes to Mars to do some experiments. Explain why her mass stays the same but her weight changes.
Snowcat [4.5K]
Because mass does not change from place to place but weight does change from place to place... why? because weight is the amount of gravitational force on an object and mass is the amount of matter in an object. mars has less gravitational force so an object will weigh less than it really weighs there
6 0
3 years ago
Which statement best describes perigee?
pantera1 [17]

Answer:

A. The closest point in the Moon's orbit to Earth

Explanation:

The perigee is defined as the closest point in the orbit of an object (such as a satellite) from the centre of the Earth. In this case, the Earth's satellite is the Moon, so the perigee is defined as the closest point in the Moon's orbit to Earth. so option A is the correct one.

Let's see instead the names of the other options:

B. The farthest point in the Moon's orbit to Earth  --> this point is called apogee

C. The closest point in Earth's orbit of the Sun  --> this point is called perihelion

D. The Sun's orbit that is closest to the Moon --> this point has no specific name

8 0
3 years ago
Read 2 more answers
A 60 kg man jumps down from a 0.8 m table. What is the speed when he
Rom4ik [11]

Answer: Speed = 4 m/s

Explanation:

The parameters given are

Mass M = 60 kg

Height h = 0.8 m

Acceleration due to gravity g= 10 m/s2

Before the man jumps, he will be experiencing potential energy at the top of the table.

P.E = mgh

Substitute all the parameters into the formula

P.E = 60 × 9.8 × 0.8

P.E = 470.4 J

As he jumped from the table and hit the ground, the whole P.E will be converted to kinetic energy according to conservative of energy.

When hitting the ground,

K.E = P.E

Where K.E = 1/2mv^2

Substitute m and 470.4 into the formula

470.4 = 1/2 × 60 × V^2

V^2 = 470.4/30

V^2 = 15.68

V = square root (15.68)

V = 3.959 m/s

Therefore, the speed of the man when hitting the ground is approximately 4 m/s

4 0
3 years ago
Other questions:
  • Find the kinetic energy of a 0.1-kilogram toy truck moving at the speed of 1.1 meters per second.
    12·1 answer
  • A "gauge 8" jumper cable has a diameter d of 0.326 centimeters. The cable carries a current I of 30.0 amperes. The electric fiel
    12·1 answer
  • In the visible spectra of stars, absorption lines of hydrogen are produced when atoms are excited from n = 2 to higher levels (t
    5·1 answer
  • How does an airbag help protect a passenger in a car following a car accident?
    12·2 answers
  • What do scientists use to look at cells, tissues, and small organisms to see how their biological processes differ in space?
    12·1 answer
  • True or false a microchip lets computers process infomation very quickly
    14·1 answer
  • What is the total amount of force needed to keep a 6.0 kg object moving at speed
    8·2 answers
  • What is buoyancy? How is it related to the force of gravity?
    13·1 answer
  • An airplane flying at 116 m/s. E, is accelerated uniformly at the rate of 9.2 m/s2, E, for 13 s. What is its final velocity in m
    7·1 answer
  • If positive work is being done to an object...
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!