The lower the value of the coefficient of friction, the lower the resistance to sliding.
<u>Explanation:</u>
The coefficient of friction defines as directly proportionate with the resisting force, which is the frictional force. Hence, if there seems a decrease at coefficient of friction, then it is sure that the frictional force decreases.
We know that the frictional force on a body, is the product of coefficient of frictions and the normal forces acting on the body. Note that friction acts only, if a body is in contact, and it is of three types, static, kinetic and rolling.
Answer:
9) This is a case of deceleration
10)-0.8 ms-2
b) acceleration is the change in velocity with time
11)
a) 100 ms-1
b) 100 seconds
12) 10ms-1
13) more information is needed to answer the question
14) - 0.4 ms^-2
15) 0.8 ms^-2
Explanation:
The deceleration is;
v-u/t
v= final velocity
u= initial velocity
t= time taken
20-60/50 =- 40/50= -0.8 ms-2
11)
Since it starts from rest, u=0 hence
v= u + at
v= 10 ×10
v= 100 ms-1
b)
v= u + at but u=0
1000 = 10 t
t= 1000/10
t= 100 seconds
12) since the sprinter must have started from rest, u= 0
v= u + at
v= 5 × 2
v= 10ms-1
14)
v- u/t
10 - 20/ 25
10/25
=- 0.4 ms^-2
15)
a=v-u/t
From rest, u=0
8 - 0/10
a= 8/10
a= 0.8 ms^-2
P=W/t
P=Power
W=Work
t=Time
Convert 16 minutes in seconds:
16 mins = 960 secs
P=6720/960=7.23 W [Watt]
Just do energy spent divided by time to get your answer. With this we can say a human might be able to!
Answer:
thick wire and cold temperatures