A free electron is one which has become detached from a covalent bond between two atoms and is able to move around from atom to atom and possibly take part in electric current flow.
Q before connected = Q after connected C1V1+C2V2 = (C1+C2) V
C1= 3×10^-6 F
V1= 480v
C2= 4×10^-6 F
V2= 500v
(3×10^-6)×(480) + (4×10^-6)×(500) = (3×10^-6 + 4×10^-6) × V
Simplifying the above, we get:
( 1440× 10^-6) + (2000 ×10^-6) = (7 × 10^-6) × V.
Further simplified as:
3440 × 10^-6 = 7 × 10^-6 × V
Making V the subject
V = 491.43volts
Therefore the potential difference across each capacitor is 491.43v
Answer:
The time of motion is 0.64 s.
Explanation:
Given;
mass of the apple, m = 107 g
height of fall, h = 2 m
The velocity of the apple when it hits the ground is calculated from the law of conservation of energy;

The time of motion is calculated;
v = u + gt
6.261 = 0 + 9.8t
6.261 = 9.8t
t = 6.261 / 9.8
t = 0.64 s
Therefore, the time of motion is 0.64 s
Hopefully I’m not late and I apologize if I am, but the answer to your question would be 95.6 km/hr. You know you can look up your question as well to see if they already have a answer to that so you won’t waste your points.
Answer: i'm not fully sure but i think it's A.
Explanation: why do i think the answer is a? well the parallel circuit definition is a closed circuit in which the current divides into two or more paths before recombining to complete the circuit. which means that if you unscrew/remove one bulb it would still work, but in a series circuit it will not work, because if you remove one it turns all the bulbs off.