2.71 m/s fast Hans is moving after the collision.
<u>Explanation</u>:
Given that,
Mass of Jeremy is 120 kg (
)
Speed of Jeremy is 3 m/s (
)
Speed of Jeremy after collision is (
) -2.5 m/s
Mass of Hans is 140 kg (
)
Speed of Hans is -2 m/s (
)
Speed of Hans after collision is (
)
Linear momentum is defined as “mass time’s speed of the vehicle”. Linear momentum before the collision of Jeremy and Hans is
= 
Substitute the given values,
= 120 × 3 + 140 × (-2)
= 360 + (-280)
= 80 kg m/s
Linear momentum after the collision of Jeremy and Hans is
= 
= 120 × (-2.5) + 140 × 
= -300 + 140 × 
We know that conservation of liner momentum,
Linear momentum before the collision = Linear momentum after the collision
80 = -300 + 140 × 
80 + 300 = 140 × 
380 = 140 × 
380/140= 
= 2.71 m/s
2.71 m/s fast Hans is moving after the collision.
Answer:
a)
, b)
, c) 
Explanation:
a) The change in the gravitational potential energy of the marble-Earth system is:


b) The change in the elastic potential energy of the spring is equal to the change in the gravitational potential energy, then:

c) The spring constant of the gun is:




<u>Given </u><u>:</u><u>-</u>
- An elevator is moving vertically up with an acceleration a.
<u>To </u><u>Find</u><u> </u><u>:</u><u>-</u>
- The force exerted on the floor by a passenger of mass m .
<u>Solution</u><u> </u><u>:</u><u>-</u>
As the man is in a accelerated frame that is <u>non </u><u>inertial</u><u> frame</u><u> </u>, we would have to think of a pseudo force .
- The direction of this force is opposite to the direction of acceleration the frame and its magnitude is equal to the product of mass of the concerned body with the acceleration of the frame .
For the FBD refer to the attachment . From that ,
<u>Hence</u><u> </u><u>option</u><u> </u><u>d </u><u>is </u><u>correct</u><u> </u><u>choice </u><u>.</u>
<em>I </em><em>hope</em><em> this</em><em> helps</em><em> </em><em>.</em>
Answer:
The correct answer option is C
Explanation:
In a balanced chemical reaction mass of the reactant are always equal to mass of the products. Also known as Law of Conservation of Mass which states that " mass can nor be created nor be destroyed in a chemical reaction."
So, the mass of the reactant will be equal to the mass of products.That is 120 grams.
Hence, the correct answer option(C).
A <span>Compound has a definte ratio of components</span>