Answer : The molecular weight of a gas is, 128.9 g/mole
Explanation : Given,
Density of a gas = 5.75 g/L
First we have to calculate the moles of gas.
At STP,
As, 22.4 liter volume of gas present in 1 mole of gas
So, 1 liter volume of gas present in
mole of gas
Now we have to calculate the molecular weight of a gas.
Formula used :

Now put all the given values in this formula, we get the molecular weight of a gas.


Therefore, the molecular weight of a gas is, 128.9 g/mole
"Carbon" is an element. It is found in the fourth group of the periodic table, and it is a stable element. This means that it can not be decomposed via heating, because if an element were to break down, it would release its subatomic particles. The explanation was probably one used to describe the thermal decomposition of a compound into smaller compounds.
Answer : The value of
at this temperature is 66.7
Explanation : Given,
Pressure of
at equilibrium = 0.348 atm
Pressure of
at equilibrium = 0.441 atm
Pressure of
at equilibrium = 10.24 atm
The balanced equilibrium reaction is,

The expression of equilibrium constant
for the reaction will be:

Now put all the values in this expression, we get :


Therefore, the value of
at this temperature is 66.7
Answer:
168.56 mL
Explanation:
density = mass/volume, use basic algebra skills to replace the volume and solve