Answer:
The molar mass is determined by applying the Ideal Gas Law, PV = nRT, where P is the pressure (in atm), V is the volume (in L), n is the number of moles of gas, R is the universal gas constant (0.08206 L∙atm/mol∙K), and T is the temperature (in K).
Hope this helps! :)
If a metal is less reactive than carbon, it can be extracted from its oxide by heating with carbon. The carbon displaces the metal from the compound, and removes the oxygen from the oxide. This leaves the metal.
Answer:
CO(g) + H2(g) + H2O(g) ==> CO2(g) + 2H2(g)
Explanation:
In the industry, hydrogen is prepared from water and hydrocarbons. Water gas being the major method of preparation of hydrogen industrially.
The water-gas reaction is an industrial process in which steam is passed over red-hot coke giving a gaseous mixture of carbon monoxide and hydrogen:
C + H2O(g) → CO + H2.
The mixture of CO and H2 is Futher passed through steam according to the equation:
CO(g) + H2(g) + H2O(g) ==> CO2(g) + 2H2(g) to give hydrogen and carbon dioxide.
Answer:
140 grams
Explanation:
.14 kilograms to grams is <em>140</em><em> </em><em>grams</em><em> </em>
<em>PLEASE DO</em><em> </em><em>MARK ME</em><em> </em><em>AS BRAINLIEST</em><em> </em><em>UWU</em><em> </em>
Answer:
3.75 L
Explanation:
We can solve this problem by using <em>Charles' law</em>, which states:
Where subscript 1 stands for initial volume and temperature and subscript 2 for final volume and temperature, meaning that in this case:
We <u>input the data</u>:
- 2.5 L * 300 K = V₂ * 200 K
And <u>solve for V₂</u>: