There's an app called photo math that can really help you with your problem
Answer:
c
Step-by-step explanation:
REally dont knwo how to explain it but i feel its the right answer
Answer:
We can conclude that the setting is stationed somewhere in the north where it's very cold, so cold that they can use sled dogs. We can also assume it's winter time because it normally snows during the winter.
So the setting is in the north where it is cold, during the winter time.
You find the eigenvalues of a matrix A by following these steps:
- Compute the matrix
, where I is the identity matrix (1s on the diagonal, 0s elsewhere) - Compute the determinant of A'
- Set the determinant of A' equal to zero and solve for lambda.
So, in this case, we have
![A = \left[\begin{array}{cc}1&-2\\-2&0\end{array}\right] \implies A'=\left[\begin{array}{cc}1&-2\\-2&0\end{array}\right]-\left[\begin{array}{cc}\lambda&0\\0&\lambda\end{array}\right]=\left[\begin{array}{cc}1-\lambda&-2\\-2&-\lambda\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26-2%5C%5C-2%260%5Cend%7Barray%7D%5Cright%5D%20%5Cimplies%20A%27%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26-2%5C%5C-2%260%5Cend%7Barray%7D%5Cright%5D-%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Clambda%260%5C%5C0%26%5Clambda%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1-%5Clambda%26-2%5C%5C-2%26-%5Clambda%5Cend%7Barray%7D%5Cright%5D)
The determinant of this matrix is

Finally, we have

So, the two eigenvalues are
