Answer: (x+8)^2 = 127
Step-by-step explanation:
Answer: v=42
Step-by-step explanation:
18+(6)(4)
542(1+1/4)
542(4/4+1/4)
542(5/4)
677.5
Answer:
d. Since fertilizer is in both data sets and is positively correlated to both tree height and fruit yield, it is like that tree height and fruit yield are also positively correlated.
Step-by-step explanation:
The correlation refers to the relationship between two or more variables i.e how they are interrelated to each other. It can be positive, negative, perfect, etc
As we can see in the figure that in both the data sets the fertilizer contains the same values which depict that they are positively correlated with respect to the height of tree and fruit yield that derives that the height of tree and fruit yield is also positively correleated
Here positive correlation means that the two variables moving in a similar direction i.e if one variable increased so the other is also increased
Therefore the option d is correct
Answer:
1. Opposite
2. angle-side-angle criterion
Step-by-step explanation:
Since ABCD is a parallelogram, the two pairs of <u>(opposite)</u> sides (AB¯ and CD¯, as well as AD¯ and BC¯) are congruent. Then, since ∠9 and ∠11 are vertical angles, it can be concluded that ∠9≅∠11. Since ABCD is a parallelogram, AB¯∥CD¯. Since ∠2 and ∠5 are alternate interior angles along these parallel lines, the Alternate Interior Angles Theorem allows that ∠2≅∠5. Since two angles of △AEB are congruent to two angles of △CED, the Third Angles Theorem supports that ∠8≅∠3. Therefore, using the <u>(angle-side-angle criterion)</u>, it can be stated that △AEB≅△CED. Then, applying the definition of congruent triangles, it can be stated that AE¯≅CE¯, which makes E the midpoint of AC¯. Use a similar argument to prove that △AED≅△CEB; then it can be concluded that E is also the midpoint of BD¯. Since the midpoint of both line segments is the same point, the segments bisect each other by definition. Match each number (1 and 2) with the word or phrase that correctly fills in the corresponding blank in the proof.
A parallelogram posses the following features:
1. The opposite sides are parallel.
2. The opposite sides are congruent.
3. It has supplementary consecutive angles.
4. The diagonals bisect each other.