1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
a_sh-v [17]
3 years ago
13

What electric field strength would store 12.5 JJ of energy in every 6.00 mm3mm3 of space?

Physics
1 answer:
Tcecarenko [31]3 years ago
8 0

To develop this problem we will apply the concepts related to the potential energy per unit volume for which we will obtain an energy density relationship that can be related to the electric field. From this formula it will be possible to find the electric field required in the problem. Our values are given as

The potential energy,  U = 13.0 J

The volume,  V = 6.00 mm^3 = 6.00*10^{-9}m^3

The potential energy per unit volume is defined as the energy density.

u = \frac{U}{V}

u= \frac{(13.0 J)}{(6.00*10^{-9} m^3)}

u= 2.167109 J/m^3

The energy density related with electric field is given by

u = \frac{1}{2} \epsilon_0 E^2

Here, the permitivity of the free space is

\epsilon_0 = 8.85*10^-{12} C^2/N \cdot m^2

Therefore, rerranging to find the electric field strength we have,

E = \sqrt{\frac{2u}{\epsilon_0}}

E = \sqrt{\frac{2(2.167109)}{8.85*10^{-12}}}

E = 2.211010 V/m

Therefore the electric field is 2.21V/m

You might be interested in
A defibrillator passes 14.0 A of current through the torso of a person for 0.0300 s. How much charge moves in coulombs?
krek1111 [17]
<h2>Answer:</h2>

4.2 C

<h2>Explanation:</h2>

The charge (Q) moving is the product of the current(I) flowing through the torso of the person and the time taken (t) for the flow.

i.e

Q = I x t

Where;

I = current = 14.0A

t = time taken  = 0.0300s

Substituting the values of I and t into the equation above gives

Q = 14.0 x 0.0300

Q = 4.2 C

Therefore quantity of charge moving is 4.2 C

4 0
3 years ago
With mechanical waves, what is moving and what stays in roughly the same place?
Zielflug [23.3K]
The part that moves are called anti-nodes. The stationary pars are nodes
6 0
4 years ago
A ball with an initial velocity of 8.00 m/s rolls up a hill without slipping. (a) Treating the ball as a spherical shell, calcul
GrogVix [38]

Answer:

Part i)

h = 5.44 m

Part ii)

h = 3.16 m

Explanation:

Part i)

Since the ball is rolling so its total kinetic energy in this case will convert into gravitational potential energy

So we have

\frac{1}{2}mv^2 + \frac{1}{2}I\omega^2 = mgh

here we know that for spherical shell and pure rolling conditions

v = R \omega

I = \frac{2}{3}mR^2

\frac{1}{2}mv^2 + \frac{1}{2}(\frac{2}{3}mR^2)(\frac{v^2}{R^2}) = mgh

\frac{5}{6}mv^2 = mgh

h = \frac{5v^2}{6g}

h = \frac{5(8^2)}{6(9.81)} = 5.44 m

Part b)

If ball is not rolling and just sliding over the hill then in that case

\frac{1}{2}mv^2 = mgh

h = \frac{v^2}{2g}

h = \frac{8^2}{2(9.81)} = 3.16 m

3 0
3 years ago
A karate master strikes a board with an initial velocity of 10.0 m/s, decreasing to 1.0 m/s as his hand passes through the board
kenny6666 [7]

The force exerted on the board by the karate master given the data is -4500 N

<h3>Data obtained from the question </h3>
  • Initial velocity (u) = 10 m/s
  • Final velocity (v) = 1 m/s
  • Time (t) = 0.002 s
  • Mass (m) = 1 Kg
  • Force (F) = ?
<h3>How to determine the force</h3>

The force exerted can be obtained as illustrated below:

F = m(v - u) / t

F = 1 (1 - 10) / 0.002

F = (1 × -9) / 0.002

F = -4500 N

Learn more about momentum:

brainly.com/question/250648

#SPJ1

6 0
2 years ago
A proton moving at 3.0 × 10^4 m/s is projected at an angle of 30° above a horizontal plane. If an electric field of 400 N/C is a
GuDViN [60]

Answer:

The time it takes the proton to return to the horizontal plane is 7.83 X10⁻⁷ s

Explanation:

From Newton's second law, F = mg and also from coulomb's law F= Eq

Dividing both equations by mass;

F/m = Eq/m = mg/m, then

g = Eq/m --------equation 1

Again, in a projectile motion, the time of flight (T) is given as

T = (2usinθ/g) ---------equation 2

Substitute in the value of g into equation 2

T = \frac{2usin \theta}{\frac{Eq}{m}} =\frac{m* 2usin \theta}{Eq}

Charge of proton = 1.6 X 10⁻¹⁹ C

Mass of proton = 1.67 X 10⁻²⁷ kg

E is given as 400 N/C, u = 3.0 × 10⁴ m/s and θ = 30°

Solving for T;

T = \frac{(1.67X10^{-27}* 2*3X10^4sin 30}{400*1.6X10^{-19}}

T = 7.83 X10⁻⁷ s

6 0
3 years ago
Other questions:
  • Moore said there are two electrons in the first shell then how many electrons would there be in the first shell of an atom of th
    5·1 answer
  • A 5 kg block is being pulled to the right by a rope tied to it. the block is accelerating at 2 m/s2 to the right. how much force
    8·2 answers
  • Which is an example of a superconductor?
    5·1 answer
  • A 6 kg bowling ball moves with a speed of 3 m/s. How fast does a 7 kg bowling ball need to move so that it has the same kinetic
    5·1 answer
  • An isotope of carbon has 6 protons and 8 neutrons.
    9·1 answer
  • Cu(s) + AgNO3(aq) → Cu(NO3)2(aq) + Ag(s) The unbalanced equation for the reduction of silver nitrate by copper is shown here. Wh
    12·1 answer
  • Paul and ivan are riding a tandem bike together
    5·2 answers
  • A camera has a lens which is a curved piece of glass. This lens takes the beams of light from an object and redirects it to form
    8·1 answer
  • A low-pressure sodium vapor lamp whose wavelength is 5.89 x 10−7 m passes through double-slits that are 2.0 x 10−4 m apart and p
    13·1 answer
  • Why does lowering the temperature of an object increase its density
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!