1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
-BARSIC- [3]
3 years ago
5

Paul and ivan are riding a tandem bike together

Physics
2 answers:
QveST [7]3 years ago
3 0

Answer:

it's D

Explanation:

victus00 [196]3 years ago
3 0
The answer is D hope that helps
You might be interested in
According to Newton´s second law of motion, what does an object with more mass require? Question 8 options:
Novay_Z [31]
More force to accelerate. If you push a car compared to a beach ball, which will you have to push harder for it to move? That's pretty much what the question is asking, if that helps any:) 
6 0
3 years ago
Read 2 more answers
Why is sustainable use important?
marusya05 [52]
To make sure that we have enough resourses to sustain ourselves. You see, if we use up, say, all water on earth, then obviously we won't have any more and we'll die.
4 0
3 years ago
Read 2 more answers
Two transverse waves travel along the same taut string inopposite directions. the waves are described by following equations use
Umnica [9.8K]

Answer: y'=2Asin(kx)cos(wt)

Explanation:

Let y1=A sin (kx + wt) be the first wave

y2=A sin (kx - wt) be the second wave in the opposite direction (which we showed by putting a negative sign between the terms kx and wt)

Please do note that both wave have the same attributes (that's Amplitude, wave number and angular frequency) because they are formed on the same medium by the same source just that their directions are opposite.

By super imposing these 2 waves, we have a resulting singular wave representing both wave (law of superimposition) with a resulting value of vertical displacement y'.

Thus y' = y1 + y2.

Let us do the math.

y'=A sin (kx + wt) + A sin (kx - wt)

By factoring A out, we have that

y' = A [ sin (kx + wt) + sin (kx - wt)]

For simplicity let us use the substitution

Let (kx + wt) = a and (kx - wt) =b

Hence we have that

y' = A [sin a + sin b].

From trigonometric ratio

sin a + sin b = 2sin[(a+b)/2] * cos [(a - b)/2]

By recalling that (kx + wt) = a and (kx - wt) =b

sin a + sin b = 2sin [(kx +wt +kx-wt) /2] * cos [(kx +wt - (kx-wt))/2]

Thus we have that

sin a + sin b = 2sin [(kx+wt+kx-wt)/2] * cos[(kx+wt-kx+wt)/2]

By collecting like terms in the bracket we have that

sin a + sin b = 2sin[2kx/2] * cos [2wt/2]

By dividing

sin a + sin b = 2sin(kx) cos(wt)

Now let us get the final resultant vertical displacement (y')

Recall that

y' = A [sin a + sin b]. and we already deduced that

sin a + sin b = 2sin(kx) cos(wt)

Finally,

y' = A [2sin(kx) cos(wt)] which is

y'=2Asin(kx)cos(wt)...... Final answer

4 0
3 years ago
Please help. I don’t understand this
skad [1K]

The short answer is that the displacement is equal tothe area under the curve in the velocity-time graph. The region under the curve in the first 4.0 s is a triangle with height 10.0 m/s and length 4.0 s, so its area - and hence the displacement - is

1/2 • (10.0 m/s) • (4.0 s) = 20.00 m

Another way to derive this: since velocity is linear over the first 4.0 s, that means acceleration is constant. Recall that average velocity is defined as

<em>v</em> (ave) = ∆<em>x</em> / ∆<em>t</em>

and under constant acceleration,

<em>v</em> (ave) = (<em>v</em> (final) + <em>v</em> (initial)) / 2

According to the plot, with ∆<em>t</em> = 4.0 s, we have <em>v</em> (initial) = 0 and <em>v</em> (final) = 10.0 m/s, so

∆<em>x</em> / (4.0 s) = (10.0 m/s) / 2

∆<em>x</em> = ((4.0 s) • (10.0 m/s)) / 2

∆<em>x</em> = 20.00 m

5 0
2 years ago
If an astronaut throws an object in space, the object’s speed will _____
BigorU [14]
The object's speed will not change.

In fact, after the astronaut throws the object, no additional forces will act on it (since the object is in free space). According to Newton's second law:
\sum F=ma
where the first term is the resultant of the forces acting on the body, m is the mass of the object and a its acceleration, we see that if no forces act on the object, then the acceleration is zero. Therefore, the acceleration of the object is zero, and its velocity remains constant.
7 0
3 years ago
Other questions:
  • A rod bent into the arc of a circle subtends an angle 2θ at the center P of the circle (see below). If the rod is charged unifor
    9·1 answer
  • Knowing that 0.80kg object weighs 8.0n find the acceleration of a 0.80kg stone in free fall
    9·2 answers
  • The work done on a box moved 3 meters by a force of 6 newtons is  newton-meters.
    14·1 answer
  • If you want to conduct an electrical current, which situation would produce a solution capable of this?
    8·2 answers
  • 2) Why can oversharing be a danger to yourself?
    7·1 answer
  • How do stars, like our sun, release energy? Is it fission or fusion?
    13·2 answers
  • An object resistance to any change in its motion is tye _ of the object
    9·2 answers
  • What is the difference between total distance covered vs. total displacement of the rube goldberg
    5·1 answer
  • Gravity can *
    6·2 answers
  • What is number 10 for this?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!