If the meter's battery is good and the meter is working OK, it should read zero ohms.
Most meters have a little adjustment wheel on the side to SET the reading to exactly zero when the probes are touched together.
Answer:
Number of revolution made by tire is 1.57 x 10⁷
Explanation:
Radius of tire, r = 0.220 m
Circumference of tire, C = 2πr
Substitute the value of r in the above equation.
C = 2 x π x 0.220 m = 1.38 m
Total distance covered by tire in a year, D = 13500 miles
But 1 mile = 1609.34 m
So, D = 13500 x 1609.34 m
Number of revolutions take by tire, N = 

N = 15743543
It’s a because b makes more since shown as the magnet
Answer:
V_vap = 161.2 L
Explanation:
The total mass of the aluminum rod is given as;
m = ρ∙V = ρ∙L∙A
Where;
ρ is density = 2700 kg/m³
L is length = 3.3m
A is cross sectional area = 3.8 cm² = 3.8 x 10⁻⁴ m²
Thus;
m = 2700kg/m³•3.3m•3.8 × 10⁻⁴m²
= 3.3858kg
By cooling down the submerged half of the aluminum rod releases an heat amount of
Q = (1/2)∙m∙cp∙∆T
Where;
cp is specific heat of aluminum aluminum = 900 J/kg
∆T is change in temperature = 274 - 4.2 = 269.8 K
Thus;
Q = (1/2)•3.3858•900•(269.8)
= 411069.978 J
The liquid absorbs this heat and vaporizes partially, such that the heat equals vaporized mass times latent heat of vaporization:
Q = m_vap•∆h_vap
Making m_vap the subject;
m_vap∙ = Q/∆h_vap
Where ∆h_vap is latent heat of vaporization given as 20900J/kg
Thus,
m_vap∙ = 411069.978/20900
= 19.668 kg
Let's divide this mass by the density of liquid helium and we get the liquid volume which has vaporized:
V_vap∙= m_vap/ρ
V_vap∙ = 19.668/122
V_vap∙ = 0.1612 m³
Converting to litres;
V_vap = 0.1612 x 1000
V_vap = 161.2 L
With Uranus at an average distance of 2.88 billion kilometres from the Sun and Neptune at an average distance of 4.5 billion kilometres it would be very easy to point out which of the gas giants is the coldest, but if you were you were to say that Neptune was the coldest, you’d be wrong.<span>Given that we expect planets further from the Sun to be colder than those closer, this does make Neptune and Uranus quite a mysterious pair. Uranus and Neptune are brimming with volatiles such as water, methane and ammonia and due to their composition in comparison to Jupiter and Saturn, which are comprised mainly of hydrogen and helium, are labelled the ice giants. Scientists have measured how hot Uranus and Neptune should be and have found that Uranus is very cold and very dim</span>