Answer:
Vi = 94.64 m/s
Explanation:
I order to find out the initial velocity of the object, we can use third equation of motion:
2ah = Vf² - Vi²
where,
a = acceleration = -9.8 m/s²
h = maximum height covered by object = 460 m - 3 m = 457 m
Vf = Final Velocity = 0 m/s (since, object momentarily stops at highest point)
Vi = Initial Velocity = ?
Therefore,
2(-9.8 m/s²)(457 m) = (0 m/s)² - Vi²
Vi = √8957.2 m²/s²
<u>Vi = 94.64 m/s</u>
Answer:
628.022466 N
8.61 m/s
Explanation:
m = Mass
= Coefficient of friction
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
g = Acceleration due to gravity = 9.81 m/s²

Magnitude of frictional force is 628.022466 N


Initial speed of the player is 8.61 m/s
Answer:
a. 4v
Explanation:
Alf moves with speed v
Alf travel during the same amount of time that is Δt = (1/4)s
v = (1/4)s / Δt = s / 4 Δt
s / Δt = 4 v
Beth travels a distance s during time Δt,
speed of Beth = s / Δt = 4 v .
Answer:
Potential energy is energy that is stored – or conserved - in an object or substance. This stored energy is based on the position, arrangement or state of the object or substance. You can think of it as energy that has the 'potential' to do work.